首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDP-glucose dehydrogenase catalyzes the incorporation of tritium into UDP-glucose (UDPG) in the presence of UDP-α-D-gluco-hexodialdose (UDP-Glc-6-CHO) and [B-3H]-NADH. The 3H is located exclusively at C-6 of the glucose moiety of UDPG and at least 79% of it is in the pro-R position. It is concluded that UDPG dehydrogenase catalyzes the abstraction of the pro-R hydrogen at C-6 of the glucose moiety of the substrate as the first step in the conversion of UDPG to UDP-glucuronic acid. The apparent lack of complete stereospecificity has been shown to result from a hitherto undetected reversible redox reaction prior to the release of UDP-glucuronic acid by the enzyme.  相似文献   

2.
Earlier observations of Dawson on the relative incorporation of [2-3H]- and [6-3H]-nicotinic acid into nicotine have been confirmed in intact Nicotiana tabacum plants. All the tritium in the nicotine derived from [2-3H]-nicotinic acid was located at C-2 of the pyridine ring. However the radioactive nicotine derived from [6-3H]-nicotinic acid was not labelled specifically at C-6 with tritium. By carrying out feeding experiments with [6-14-C, 2-3H]- and [6-14C, 3H]-nicotinic acids, it was established that there was very little loss of tritium from C-2 and C-6 of nicotinic acid during 5 days of metabolism in the tobacco plant.  相似文献   

3.
The substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase from a mouse mastocytoma was examined to determine the effects of N-acetyl and O-sulfate groups on substrate recognition by the enzyme. [5-3H]Glucuronosyl-labeled heparosan N-sulfate was prepared enzymatically and was modified chemically by partial N-desulfation and N-acetylation. After enzymatic release of tritium, the location of remaining label was determined by deaminative cleavage and analysis of resulting di-, tetra-, and higher oligosaccharides. This analysis indicated that a D-glucuronosyl residue is recognized as a substrate if it is linked at C-1 to an N-acetylated glucosamine residue and at C-4 to an N-sulfated unit. However, the reverse structure, in which the D-glucuronosyl moiety is bound at C-1 to an N-sulfated residue and at C-4 to N-acetylated glucosamine, is not a substrate. Similar studies with O-sulfated heparin intermediates showed that O-sulfate groups either at C-2 of the L-iduronosyl moieties or at C-6 of vicinal D-glucosaminyl moieties prevent 5-epimerization. These findings were confirmed by studies of the reverse reaction, in which tritium was incorporated from 3H2O into partially O-desulfated heparin and the location of incorporated radioactivity was determined. These and more direct experiments corroborated the previous conclusion that the L-iduronosyl moieties are formed after N-sulfation but before O-sulfation. Assessment of the influence of substrate size on the reaction further showed that a large substrate is preferred; an octasaccharide released tritium at a rate approximately 10% of that observed for the parent polysaccharide, and some release occurred also with smaller oligosaccharides.  相似文献   

4.
The stimulatory effects of N6,O2′-dibutyryl adenosine 3′,5′-monophosphate on proteoglycans released from immature rabbit ear cartilage were studied in vitro. Cartilage incubated in medium containing dibutyryl cyclic AMP resulted in a significant increase of proteoglycans released in concentrations above 0.5 mM. Theophylline (1 mM) which did not significantly stimulate proteoglycans released alone, was found to potentiate the action of this nucleotide. ATP, 5′-AMP and butyric acid in the presence of theophylline, did not stimulate proteoglycans released. The addition of protein or RNA synthesis inhibitors depressed proteoglycans released by dibutyryl cyclic AMP and theophylline.Gel chromatographic and chemical investigations of the proteoglycans released into the culture media in the presence of dibutyryl cyclic AMP indicated a reduction in the proportion of protein associated with these complexes. This result, together with enzyme inhibitor studies, leads us to speculate that the observed action of dibutyryl cyclic AMP on rabbit ear cartilages may be mediated by the neural proteases.  相似文献   

5.
Pectate lyase was isolated from the cell extract of Erwinia aroideae. The enzyme was further purified to a high degree by a procedure involving ammonium sulfate fractionation and chromatography on CM-Sephadex C-50 and on Sephadex G-200. The enzyme attacked its substrate in an endo fashion and was more active on the sodium salt of acid-insoluble polygalacturonate or pectic acid than it was on the methoxylated pectin. The enzyme had an optimum pH at 9.3, was stimulated by calcium ions, and was completely inhibited by ethylenediaminetetraacetic acid. In addition, the reaction products showed an absorption maximum between 230 and 235 nm and reacted with thiobarbituric acid. These results indicate that the purified enzyme is an endopectate lyase. The endopectate lyase also had the ability to solubilize effectively the pectic fraction from the cell walls of carrot (Daucus carota) root tissue. The enzyme released 30.5% of the wall as soluble products and also liberated all of the galacturonic acid present in the walls. The total neutral sugars released by the enzyme were 10.6% of the walls, which corresponded to 71.5% of noncellulosic neutral sugars. The soluble products were separated into five fractions by DEAE-Sephadex A-50 column chromatography. Based on the analysis of sugar composition of each fraction, the pectic fraction of carrot cell wall is presented.  相似文献   

6.
Leaves of Spinacea oleracea and Medicago sativa were incubated with (2-14C, (4R)-43H1 mevalonic acid and the sterols isolated. Cycloartenol had a 3H: 14C atomic ratio of 6:6 whilst oxidation to cycloartenone resulted in a ratio of 5:6 showing that tritium was present in the 3α-position and that the cycloartenol was symmetrically labelled. Separation of the 4-demethyl sterols gave α-spinasterol and a mixture of stigmast-7-enol and 24-methylcholest-7-enol, which had 3H: 14C atomic ratios of 3:5. Ozonolysis of α-spinastery] acetate gave the terminal side chain fragment as 2-ethyl-3-methyl butanoic acid. The acid contained 14C but no tritium thus showing that the C-24 hydrogen of cycloartenol is lost during the alkylation reactions leading to the C-24 ethyl group of α-spinasterol.  相似文献   

7.
In the course of a half-reaction of enzymic transamination, the aldimine adduct formed between the coenzyme pyridoxal 5'-phosphate and the amino acid substrate tautomerizes to the ketimine intermediate which is then hydrolyzed to the oxo acid product and the pyridoxamine 5'-phosphate form of the enzyme. In the reverse half-reaction the tautomerization is initiated by the removal of a proton from the pro-S position at C-4' of the PMP moiety of the ketimine intermediate. The present study investigates the question whether the pro-S hydrogen at C-4' of PMP is labilized by its active site environment independently of the formation of the ketimine intermediate, i.e. in the absence of substrate. Reconstitution of apoaspartate aminotransferase (mitochondrial isoenzyme from chicken) with [4'-3H] PMP results indeed in a stereospecific exchange of pro-S 3H with solvent water. The exchange follows first order kinetics (t 1/2 = 23 min at pH 7.5 and 25 degrees C). Unbound PMP showed no measurable exchange. Rigorous control experiments excluded the possibility that the observed exchange was due to a transamination reaction of the enzyme with contaminating oxo acid substrates. The newly observed stereospecific exchange reaction allows to investigate the acid/base properties of C-4' and the modulating effects of its active site environment independently of the preceding and following steps of enzymic transamination.  相似文献   

8.
Bacillus sp. GL1 xanthan lyase, a member of polysaccharide lyase family 8 (PL-8), acts exolytically on the side-chains of pentasaccharide-repeating polysaccharide xanthan and cleaves the glycosidic bond between glucuronic acid (GlcUA) and pyruvylated mannose (PyrMan) through a beta-elimination reaction. To clarify the enzyme reaction mechanism, i.e. its substrate recognition and catalytic reaction, we determined crystal structures of a mutant enzyme, N194A, in complexes with the product (PyrMan) and a substrate (pentasacharide) and in a ligand-free form at 1.8, 2.1, and 2.3A resolution. Based on the structures of the mutant in complexes with the product and substrate, we found that xanthan lyase recognized the PyrMan residue at subsite -1 and the GlcUA residue at +1 on the xanthan side-chain and underwent little interaction with the main chain of the polysaccharide. The structure of the mutant-substrate complex also showed that the hydroxyl group of Tyr255 was close to both the C-5 atom of the GlcUA residue and the oxygen atom of the glycosidic bond to be cleaved, suggesting that Tyr255 likely acts as a general base that extracts the proton from C-5 of the GlcUA residue and as a general acid that donates the proton to the glycosidic bond. A structural comparison of catalytic centers of PL-8 lyases indicated that the catalytic reaction mechanism is shared by all members of the family PL-8, while the substrate recognition mechanism differs.  相似文献   

9.
The stereochemistry of the replacement of the SH-group of cysteine by CN catalyzed by β-cyanoalanine synthetase was studied using cysteine stereospecifically tritiated at C-3. Analysis of the resulting β-cyanoalanine by conversion into fumarate via aspartate and malate showed that the reaction had occurred with retention of configuration at C-3. Using cystine stereospecifically labeled at C-3 with tritium or with tritium and deuterium, it was found that the α,β-elimination reaction catalyzed by S-alkylcysteine lyase involves stereo-specific replacement of the β-substituent of the substrate by a hydrogen derived from the solvent, D2O or H2O, with retention of configuration to give pyruvate containing a chiral methyl group. The results are discussed, particularly in the light of mechanistic proposals by Braunstem and co-workers.  相似文献   

10.
The 1H and 13C nmr spectra of Co(NH3)5ImH3+ and the 1H nmr spectra of αCotrien(ImH)23+ and βCotrien(ImH)23+ are reported. The pKa values determined from the dependence of the chemical shift on pH are 10.0, 9.6, and 10.1, respectively. The range of the chemical shift between the acid and base forms is unusually small in the 1H nmr, 0.5–0.7 ppm for the C-2 H and about 0.25 ppm for the C-4 H and C-5 H. In the 13C nmr, C-2 and C-4 have large shifts to low field and C-5 a small shift to high field on deprotonation. The C-2 proton is not exchanged with solvent 2H under acidic or basic conditions, in marked contrast to the corresponding proton in both imidazole and 1-methylimidazole. These spectroscopic and chemical properties should be useful for the direct identification of metal-ion coordinated histidines in proteins.  相似文献   

11.
A new group of acetic acid (7ac, R1 = H), and propionic acid (7df, R1 = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF2 substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO2NH2) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs.  相似文献   

12.
Accurate quantitation of thymidylate synthetase activity using a tritium-release assay is dependent upon measurement of only that tritium released from deoxy[5-3H]uridine monophosphate ([3H]dUMP) during the biosynthesis of thymidylate. Removal of remaining [3H]dUMP on completion of the assay by charcoal adsorption and correction for the nonenzymatic release of tritium are necessary. Although over 99% of [3H]dUMP is removed immediately following addition of charcoal, these studies demonstrate that sufficient [3H]dUMP can remain to prevent accurate measurement of low levels of thymidylate synthetase activity. By delaying measurement of radioactivity for at least 24 h following addition of charcoal, this problem is minimized. To account for nonenzymatic release of tritium, a blank containing enzyme extract with omission of ±,l-5,10-methylenetetrahydrofolate is demonstrated to be more effective than the commonly used blank in which water is substituted for enzyme extract. In samples containing 5-fluoro-2′-deoxyuridine monophosphate (FdUMP), a potent inhibitor of thymidylate synthetase activity, an alternative blank containing a high concentration of FdUMP (approximately 1mM) is useful in demonstrating a theoretical maximal or complete inhibition of thymidylate synthetase activity.  相似文献   

13.
Carboxypeptidase Y, localized in the lysosome-like yeast vacuole, has been metabolically labeled with [2-3H]mannose. After immunoprecipitation the carbohydrate moieties were released by treatment with endo-β-N-acetyl-glucosaminidase H and separated by paper electrophoresis. Evidence for the presence of phospho-monoester and -diester groups in the molecule has been obtained. In the latter phosphate links C-1 of mannose or of mannosyl 1,3-mannose to C-6 of a mannose residue within a larger oligomannose moiety. In the presence of tunicamycin yeast cells synthesize a carbohydrate-free carboxypeptidase Y, which could be traced after metabolic labeling with [14C]-phenylalanine. The carbohydrate-free enzyme was segregated into the vacuoles to the same extent as the intact glycoprotein.  相似文献   

14.
Nuclear magnetic resonances of the C-2 protons of the three histidine residues in ribonuclease T1 have been studied at 360 MHz as a function of pH to discuss the structure of the active site. Comparison of the order of deuterium exchange of the histidine peaks with tritium incorporation rates into individual histidines of the enzyme leads to the unambigous assignment of one of the C-2 proton peaks to histidne-40. It has been concluded that histidine-40 is in the active site, interacting with a charged group of pK 4.1, which is replaced by the phosphate group of guanosine-3′-monophosphate in the enzyme-inhibitor complex. Histidine-92 is most likely a binding site for the complex, where the existence of a hydrogen bond between N-7 of the inhibitor and the ring NH proton of the histidine is suggested on the basis of NMR data.  相似文献   

15.
Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two α-1,4-endopolygalacturonic acid lyases (EC 4·2·2·2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 × 10−9 molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.  相似文献   

16.
Formation of 12L-hydroxy-5,8,10,14-eicosatetraenoic acid from [10L-3H; 3-14C]arachidonic acid in suspensions of human platelets occurred with extensive loss of tritium and was accompanied by an isotope effect. These experiments showed that there is an antarafacial relation between the elimination of hydrogen from C-10 and insertion of oxygen at C-12 by human platelet lipoxygenase, and that the hydrogen elimination probably occurs as the initial step of the conversion. (Endo) peroxide intermediates formed by the fatty acid cyclo-oxygenase pathway activated platelet lipoxygenase.  相似文献   

17.
Trevor Robinson 《Phytochemistry》1978,17(11):1903-1905
Isotopic tracer experiments confirmed that glycerol and succinic acid are good precursors of the pyridine ring of ricinine in castor bean plants. Tritium from C-2 was lost from tritiated glycerol while tritium from C-1 was retained. Thus a derivative of dihydroxyacetone is likely to be intermediate. By simultaneous feeding of glycerol-1-(3)-[3H] and succinic acid-2(3)-[14C], it was hoped to find precursors of ricinine containing both labels, but none could be found. There was no evidence for the appearance of labeled quinolinic acid, which is presumed to be a precursor of ricinine.  相似文献   

18.
α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-d-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B′ subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp553 and Asp665 are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite −1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase.  相似文献   

19.
Samples of D-glucose and starch were labeled by tritium-atom bombardment. Up to 51% incorporation into D-glucose as non-labile tritium was achieved for crystalline, anhydrous D-glucose and 41% for the amylose-butyl alcohol complex. Distribution of tritium in the carbon skeleton of D-glucose was calculated by comparing the specific molar activity of D-glucose with that of its derivatives. Derivatives prepared were D-gluconic acid, D-arabino-hexulose phenylosotriazole, 4-formyl-2-phenyltriazole, 2-phenyltriazole-4-carboxylic acid, D-arabino-hexulose phenylflavazole, 3-formyl-1-phenylflavazole, and formaldehyde dimedone. The tritium distribution showed definite structural effects. Generally, the products from films of D-glucose and the amylose-butyl alcohol complex had nearly uniform distribution of tritium in D-glucose. The product from crystalline α-D-glucose monohydrate had zero tritium at C-2 and twice the expected amount of tritium at C-5, and that from starch granules had zero or near zero tritium at C-3 and close to twice the expected amount of tritium at C-2.  相似文献   

20.
H M Miziorko  C E Behnke  F Ahmad 《Biochemistry》1989,28(14):5759-5764
Incubation of 3-chloropropionyl-CoA with 3-hydroxy-3-methylglutaryl-CoA synthase results in exchange of the C2 proton with solvent as inactivation of enzyme proceeds. This enzyme is also inhibited by S-acrylyl-N-acetylcysteamine; the limiting rate constant for inactivation by the acrylyl derivative (0.36 min-1) slightly exceeds the value measured for chloropropionyl-CoA (0.31 min-1). These observations support the intermediacy of acrylyl-CoA in the chloropropionyl-CoA-dependent inactivation of hydroxymethylglutaryl-CoA synthase. Inhibition of fatty acid synthase by chloropropionyl-CoA is primarily due to alkylation of a reactive cysteine, although secondary reaction with the enzyme's pantetheinyl sulfhydryl occurs. Modification of fatty acid synthase by S-acrylyl-N-acetylcysteamine occurs at a limiting rate (1.8 min-1) that is comparable to that estimated for chloropropionyl-CoA-dependent inactivation. However, this enzyme lacks the ability to deprotonate C2 of an acyl group such as the chloropropionyl moiety. Since such a step would be required to generate an acrylyl group from chloropropionyl-S-enzyme, it is likely that a typical affinity labeling process accounts for inactivation of fatty acid synthase by chloropropionyl-CoA. HMG-CoA lyase is also inhibited by S-acrylyl-N-acetylcysteamine. In contrast to the ability of this reagent to serve as a mechanism-based inhibitor of hydroxymethylglutaryl-CoA synthase and an affinity label of fatty acid synthase, it acts as a group-specific reagent in modifying HMG-CoA lyase (kappa 2 = 86.7 M-1 min-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号