首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of immobilized subtilisin BPN' on pure cellulose-based membrane support was investigated using site-directed and random immobilization approaches. The catalytic activity of site-directed immobilized subtilisin on pure cellulose fiber-based materials was found to be 81% of that in homogeneous solution, while that of randomly immobilized subtilisin was 27%. Pure cellulose membrane supports provided large surface areas for high enzyme loading without diffusional limitations. The activity of immobilized subtilisin on pure cellulose support was more than twice that on a modified polyether sulfone (MPS) membrane, which was attributed to the higher hydrophilicity of cellulose. Immobilized subtilisin maintained its initial activity for 14 days at 4 degrees C and 7 days at 24 degrees C. The immobilized enzyme could resist higher temperature and operate over a wider range of pH without loss of activity. This study showed that pure cellulose fiber-based membranes are well suited for enzyme immobilization and biocatalysis.  相似文献   

2.
A method for thermally induced switching of enzyme activity has been developed, based on the site-directed conjugation of end-reactive temperature-responsive polymers to a unique cysteine (Cys) residue positioned near the enzyme active site. The reversible temperature-induced collapse of N,N-dimethylacrylamide (DMA)/N-4-phenylazo-phenylacrylamide (AZAAm) copolymers (DMAAm) has been used as a molecular switch to control the catalytic activity of endoglucanase 12A (EG 12A). The polymer was conjugated to the EG 12A site-directed mutant N55C, directly adjacent to the cellulose binding cleft, and to the S25C mutant, where the conjugation site is more distant. The N55C conjugate displayed a larger activity shutoff efficiency in the collapsed polymer state than the S25C conjugate. Increasing the polymer molecular weight was also shown to increase the shutoff efficiency of the switch. Related to these effects of conjugation site and polymer size, the switching efficiency was found to be strongly dependent on substrate size. With a small substrate, o-nitrophenyl-beta-d-cellobioside (ONPC), there was minimal blocking of enzyme activity when the polymer was in the expanded state. With a large substrate, hydroxyethyl cellulose (HEC), there was a large reduction of enzyme activity in the polymer expanded state, even with relatively small polymer chains, and a further reduction when the polymer was collapsed. Similar general trends for the interactive effects of conjugation site, polymer size, and substrate size were observed for immobilized conjugates. Kinetic studies demonstrated that the switching activity was due to the blocking of substrate association by the collapsed polymers. These investigations provide mechanistic insight that can be utilized to design molecular switches for a variety of stimuli-responsive polymer-protein conjugates.  相似文献   

3.
Cysteine 84 was replaced by glycine in Serratia marcescens anthranilate synthase Component II using site-directed mutagenesis of cloned trpG. This replacement abolished the glutamine-dependent anthranilate synthase activity but not the NH3-dependent activity of the enzyme. The mutation provides further evidence for the role of active site cysteine 84 in the glutamine amide transfer function of anthranilate synthase Component II. By the criteria of circular dichroism, proteolytic inactivation, and feedback inhibition the mutant and wild type enzymes were structurally similar. The NH3-dependent anthranilate synthase activity of the mutant enzyme supported tryptophan synthesis in media containing a high concentration of ammonium ion.  相似文献   

4.
Subtilisin 72 was immobilized on cryogel of poly(vinyl alcohol), the macroporous carrier prepared by the freeze-thaw-treatment of concentrated aqueous solution of the polymer. The obtained biocatalyst was active and stable in aqueous, aqueous-organic, as well as in low water media. The stability of immobilized biocatalyst was substantially higher than that of native enzyme in all mixtures especially in aqueous buffer containing 5–8 M Urea and in acetonitrile/60–90%DMF mixtures. The ability of native and immobilized subtilisin to catalyze peptide bond formation between Z-Ala-Ala-Leu-OMe and Phe-pNA was studied in non-aqueous media. Considerable enzyme stabilization in acetonitrile/90%DMF mixture, induced by the immobilization, resulted in higher product yield (57%) than in case of native subtilisin suspension (32%). Detailed study of synthesis reaction revealed that notable increase in product yield could be reached using increase in both substrate concentrations up to 200 mM.  相似文献   

5.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.  相似文献   

6.
The activity and stability of native subtilisin 72, its complex with poly(acrylic acid), and subtilisin covalently attached to poly(vinyl alcohol) cryogel were studied in aqueous and organic media by hydrolysis of specific chromogenic peptide substrates. Kinetic parameters of the hydrolysis of Glp-Ala-Ala-Leu-pNA by native subtilisin and its complex with poly(acrylic acid) were determined. Based on the comparative study of stability of native and modified subtilisins in media of various compositions, it was established that covalent immobilization of subtilisin on poly(vinyl alcohol) cryogel is the most effective approach to improve enzyme stability in water as well as in mixtures with low water content.  相似文献   

7.
Carp muscle-specific creatine kinase M1 isoenzyme (M1-CK) seems to have evolved to adapt to synchronized changes in body temperature and intracellular pH. When gly(268) in rabbit muscle-specific creatine kinase was substituted with asn(268) as found in carp M1-CK, the rabbit muscle-specific CK G286N mutant specific activity at pH 8.0 and 10°C was more than 2-fold higher than that in the wild-type rabbit enzyme. Kinetic studies showed that K(m) values of the rabbit CK G268N mutant were similar to those of the wild-type rabbit enzyme, yet circular dichroism spectra showed that the overall secondary structures of the mutant enzyme, at pH 8.0 and 5°C, were almost identical to the carp M1-CK enzyme. The X-ray diffraction pattern of the mutant enzyme crystal revealed that amino acid residues involved in substrate binding are closer to one another than in the rabbit enzyme, and the cysteine283 active site of the mutant enzyme points away from the ADP binding site. At pH 7.4-8.0 and 35-10°C, with a smaller substrate, dADP, specific activities of the mutant enzyme were consistently higher than the wild-type rabbit enzyme and more similar to the carp M1-CK enzyme. Thus, the smaller active site of the RM-CK G268N mutant may be one of the reasons for its improved activity at low temperature.  相似文献   

8.
Specific activities and the amounts of active immobilized enzyme were determined for several different preparations of alpha-chymotrypsin immobilized on CNBr-activated Sepharose 4B. Electron paramagnetic resonance (EPR) spectroscopy of free and immobilized enzyme with a spin label coupled to the active site was used to probe the effects of different immobilization conditions on the immobilized enzyme active site configuration. Specific activity of active enzyme decreased and rotational correlation time of the spin label increased with increasing immobilized enzyme loading. Enzyme immobilized using an intermediate six-carbon spacer arm exhibited greater specific activity and spin label mobility than directly coupled enzyme. The observed activity changes due to immobilization were completely consistent with corresponding active site structure alterations revealed by EPR spectroscopy.  相似文献   

9.
Specific activities and the amounts of active immobilized enzyme were determined for several different preparations of alpha-chymotrypsin immobilized on CNBr-activated Sepharose 4B. Electron paramagnetic resonance (EPR) spectroscopy of free and immobilized enzyme with a spin label coupled to the active site was used to probe the effects of different immobilization conditions on the immobilized enzyme active site configuration. Specific activity of active enzyme decreased and rotational correlation time of the spin label increased with increasing immobilized enzyme loading. Enzyme immobilized using an intermediate six-carbon spacer arm exhibited greater specific activity and spin label mobility than directly coupled enzyme. The observed activity changes due to immobilization were completely consistent with corresponding active site structure alterations revealed by EPR spectroscopy.  相似文献   

10.
The specific activity of subtilisin E, an alkaline serine protease of Bacillus subtilis, was substantially increased by optimizing the amino acid residue at position 31 (Ile in the wild-type enzyme) in the vicinity of the catalytic triad of the enzyme. Eight uncharged amino acids (Cys, Ser, Thr, Gly, Ala, Val, Leu, and Phe) were introduced at this site, which is next to catalytic Asp32, using site-directed mutagenesis. Mutant enzymes were expressed in Escherichia coli and were prepared from the periplasmic space. Only the Val and Leu substitutions gave active enzyme, and the Leu31 mutant was found to have a greatly increased activity compared to the wild-type enzyme. The other six mutant enzymes showed a marked decrease in activity. This result indicates that a branched-chain amino acid at position 31 is essential for the expression of subtilisin activity and that the level of the activity depends on side chain structure. The purified Leu31 mutant enzyme was analyzed with respect to substrate specificity, heat stability, and optimal temperature. It was found that the Leu31 replacement caused a prominent 2-6-fold increase in catalytic efficiency (kcat/Km) due to a larger kcat for peptide substrates.  相似文献   

11.
Introduction of a disulfide bond by site-directed mutagenesis was found to enhance the stability of subtilisin BPN' (EC 3.4.21.14) under a variety of conditions. The location of the new disulfide bond was selected with the aid of a computer program, which scored various sites according to the amount of distortion that an introduced disulfide linkage would create in a 1.3-A X-ray model of native subtilisin BPN'. Of the several amino acid pairs identified by this program as suitable candidates, Thr-22 and Ser-87 were selected by using the additional requirement that the individual cysteine substitutions occur at positions that exhibit some degree of variability in related subtilisin amino acid sequences. A subtilisin variant containing cysteine residues at positions 22 and 87 was created by site-directed mutagenesis and was shown to have an activity essentially equivalent to that of the wild-type enzyme. Differential scanning calorimetry experiments demonstrated the variant protein to have a melting temperature 3.1 degrees C higher than that of the wild-type protein and 5.8 degrees C higher than that of the reduced form (-SH HS-) of the variant protein. Kinetic experiments performed under a variety of conditions, including 8 M urea, showed that the Cys-22/Cys-87 disulfide variant undergoes thermal inactivation at half the rate of that of the wild-type enzyme. The increased thermal stability of this disulfide variant is consistent with a decrease in entropy for the unfolded state relative to the unfolded state that contains no cross-link, as would be predicted from the statistical thermodynamics of polymers.  相似文献   

12.
The use of methanethiosulfonates as thiol-specific modifying reagents in the strategy of combined site-directed mutagenesis and chemical modification allows virtually unlimited opportunities for creating new protein surface environments. As a consequence of our interest in electrostatic manipulation as a means of tailoring enzyme activity and specificity, we have recently adopted this approach for the controlled incorporation of multiple negative charges at single sites in the representative serine protease, subtilisin Bacillus lentus (SBL). We now describe the use of this strategy to introduce multiple positive charges. A series of mono-, di- and triammonium methanethiosulfonates were synthesized and used to modify cysteine mutants of SBL at positions 62 in the S2 site, 156 and 166 in the S1 site and 217 in the S1' site. Kinetic parameters for these chemically modified mutants (CMM) enzymes were determined at pH 8.6. The presence of up to three positive charges in the S1, S1' and S2 subsites of SBL resulted in up to 77-fold lowered activity, possibly due to interference with the histidinium ion formed in the transition state of the hydrolytic reactions catalyzed.  相似文献   

13.
T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function by virtue of its ability to function in the presence of metal-chelating agents. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.  相似文献   

14.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

15.
Corynebacterium glutamicum 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase is sensitive to feedback inhibition by tyrosine. One feedback-insensitive mutant was obtained by in vitro chemical mutagenesis and the mutation was identified as a C-->G mutation at nucleotide 560 causing a Ser(187) to Cys(187) substitution. Replacing Ser(187) with cysteine, tyrosine or phenylalanine by site-directed mutagenesis not only reduced the enzymatic activity but also relieved its feedback inhibition by tyrosine, while Ser(187)Ala exhibited a comparable activity to that of wild-type enzyme and sensitized to allosteric regulation. The His(6)-tagged enzymes were expressed in Escherichia coli and purified to homogeneity by immobilized nickel-ion affinity chromatography. Kinetic analysis showed that tyrosine is a competitive inhibitor of phosphoenol pyruvate, one of the precursors for DAHP biosynthesis.  相似文献   

16.
Yu W  Chu X  Deng G  Liu X  Chen G  Li D 《Biochimica et biophysica acta》2006,1760(12):1874-1883
We report here a novel example of generating hydratase activity through site-directed mutagenesis of a single residue Lys242 of rat liver mitochondrial Delta3-Delta2-enoyl-CoA isomerase, which is one of the key enzymes involved in fatty acid oxidation and a member of the crotonase superfamily. Lys242 is at the C-terminal of the enzyme, which is far from the active site in the crotonase superfamily and forms a salt bridge with Asp149. A variety of mutant expression plasmids were constructed, and it was observed that mutation of Lys242 to nonbasic residues allowed the mutants to have enoyl-CoA hydratase activity confirmed by HPLC analysis of the incubation mixture. Kinetic studies of these mutants were carried out for both isomerase and hydratase activities. Mutant K242C showed a k(cat) value of 1.0 s(-1) for hydration reaction. This activity constitutes about 10% of the total enzyme activity, and the remaining 90% is its natural isomerase activity. To the best of our knowledge, this is the first report on the generation of functional promiscuity through single amino acid mutation far from the active site. This may be a simple and efficient approach to designing a new enzyme based on an existing template. It could perhaps become a general methodology for facilitating an enzyme to acquire a type enzymatic activity that belongs to another member of the same superfamily, by interrupting a key structural element in order to introduce ambiguity, using site-directed mutagenesis.  相似文献   

17.
To investigate how the conformational flexibility of subtilisin affects its ability to discriminate between enantiomeric amino acid and ester substrates for the subtilisin-catalyzed reaction in an organic solvent, the flexibility around the active site and the surface of subtilisin was estimated from the mobility of a spin label bound to subtilisin by ESR spectroscopy. Many studies on enzyme flexibility focus on the active site. Both the surface and active site flexibility play an important role in the enantioselectivity enhancement of the enzyme-catalyzed reaction. It was found, however, that the different behavior observed for the enantioselectivity between the amino acid and ester substrates could be correlated with the flexibility around the surface rather than the flexibility at the active site of subtilisin. In other words, for the ester substrates, the greater flexibility around the surface of subtilisin induced by a conformational change resulting from the presence of an additive such as DMSO is essential for the enantioselectivity enhancement. This model is also supported by the Michaelis-Menten kinetic parameters for each enantiomeric substrate. Our findings provide insight into the enantioselectivity enhancement for the resolution of enantiomers for enzyme-catalyzed reactions in organic solvents.  相似文献   

18.
The phenomenon known as "ligand imprinting" or "ligand-induced enzyme memory" was first reported in 1988, when Russell and Klibanov observed that lyophilizing subtilisin in the presence of competitive inhibitors (that were subsequently removed) could significantly enhance its activity in an apolar solvent. (Russell and Klibanov, J Biol Chem 1988;263:11624-11626). They further observed that this enhancement did not occur when similar assays were carried out in water. Herein, we shed light on the molecular determinants of ligand imprinting using a molecular dynamics (MD) approach. To simulate the effect of placing an enzyme in the presence of a ligand before its lyophilization, an inhibitor was docked in the active site of subtilisin and 20 ns MD simulations in water were performed. The ligand was then removed and the resulting structure was used for subsequent MD runs using hexane and water as solvents. As a control, the same simulation setup was applied using the structure of subtilisin in the absence of the inhibitor. We observed that the ligand maintains the active site in an open conformation and that this configuration is retained after the removal of the inhibitor, when the simulations are carried out in hexane. In agreement with experimental findings, the structural configuration induced by the ligand is lost when the simulations take place in water. Our analysis of fluctuations indicates that this behavior is a result of the decreased flexibility displayed by enzymes in an apolar solvent, relatively to the aqueous situation.  相似文献   

19.
We report here a novel example of generating hydratase activity through site-directed mutagenesis of a single residue Lys242 of rat liver mitochondrial Δ32-enoyl-CoA isomerase, which is one of the key enzymes involved in fatty acid oxidation and a member of the crotonase superfamily. Lys242 is at the C-terminal of the enzyme, which is far from the active site in the crotonase superfamily and forms a salt bridge with Asp149. A variety of mutant expression plasmids were constructed, and it was observed that mutation of Lys242 to nonbasic residues allowed the mutants to have enoyl-CoA hydratase activity confirmed by HPLC analysis of the incubation mixture. Kinetic studies of these mutants were carried out for both isomerase and hydratase activities. Mutant K242C showed a kcat value of 1.0 s− 1 for hydration reaction. This activity constitutes about 10% of the total enzyme activity, and the remaining 90% is its natural isomerase activity. To the best of our knowledge, this is the first report on the generation of functional promiscuity through single amino acid mutation far from the active site. This may be a simple and efficient approach to designing a new enzyme based on an existing template. It could perhaps become a general methodology for facilitating an enzyme to acquire a type enzymatic activity that belongs to another member of the same superfamily, by interrupting a key structural element in order to introduce ambiguity, using site-directed mutagenesis.  相似文献   

20.
Although highly stable toward unfolding, native ribonuclease A is known to be cleaved by unspecific proteases in the flexible loop region near Ala20. With the aim to create a protease-resistant ribonuclease A, Ala20 was substituted for Pro by site-directed mutagenesis. The resulting mutant enzyme was nearly identical to the wild-type enzyme in the near-UV and far-UV circular dichroism spectra, in its activity to 2',3'-cCMP and in its thermodynamic stability. However, the proteolytic resistance to proteinase K and subtilisin Carlsberg was extremely increased. Pseudo-first-order rate constants of proteolysis, determined by densitometric analysis of the bands of intact protein in SDS-PAGE, decreased by two orders of magnitude. In contrast, the rate constant of proteolysis with elastase was similar to that of the wild-type enzyme. These differences can be explained by the analysis of the fragments occurring in proteolysis with elastase. Ser21-Ser22 was identified as the main primary cleavage site in the degradation of the mutant enzyme by elastase. Obviously, this bond is not cleavable by proteinase K or subtilisin Carlsberg. The results demonstrate the high potential of a single mutation in protein stabilization to proteolytic degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号