首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amidase activity of human gamma-thrombin has been studied in the pH range 6-10 as a function of NaCl concentration and temperature. As recently found for human alpha-thrombin [Di Cera, E., De Cristofaro, R., Albright, D.J., & Fenton, J.W., II (1991) Biochemistry 30, 7913-7924], the Michaelis-Menten constant, Km, shows a bell-shaped dependence over this pH range with a minimum around pH 7.9 in the presence of 0.1 M NaCl at 25 degrees C. The catalytic constant, kcat, has a bell-shaped pH dependence with a maximum around pH 8.6. A thermodynamic analysis of these parameters has enabled a characterization of the linkage between proton and substrate binding, its dependence on NaCl concentration, and the relevant entropic and enthalpic contributions to binding and catalytic events. Three groups seem to be responsible for the control of gamma-thrombin amidase activity as a function of pH. One of these groups has pK values that are significantly different from those found for alpha-thrombin, and all groups show slightly perturbed enthalpies of ionization. The dependence of gamma-thrombin amidase activity on NaCl concentration is different from that of alpha-thrombin. Increasing NaCl concentration always decreases the substrate affinity for the enzyme in the case of alpha-thrombin, regardless of pH. In the case of gamma-thrombin, such an effect is observed only in the pH range 7.5-9, and a reversed linkage is observed at pH less than 7 and greater than 9.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The amidase activity of human alpha-thrombin has been studied in the pH range 5.5 to 10, and at four different chloride concentrations from 5 mM to 1 M. The Michaelis-Menten constant, Km, shows a bell-shaped dependence over the pH range studied, with a minimum around pH 8. The pH dependence of the catalytic constant, kcat, shows multiple inflection points especially at low (less than 0.1 M) chloride concentrations, thereby implicating the existence of multiple catalytic forms of the enzyme. A general linkage scheme is proposed for the analysis of the effect of protons on thrombin amidase activity, and experimental data have globally been analysed over the entire pH range in terms of such a scheme. Four proton-linked ionizable groups seem to be involved in the control of thrombin amidase activity. Two of these groups change their pK value upon substrate binding to the enzyme and account for the pH dependence of Km. All four groups control the catalytic activity of the enzyme which decreases with increasing protonation. Chloride has little effect on Km, while kcat changes significantly at pH less than 8. This effect is due to an increased enzymatic activity of the highly protonated intermediates at high chloride concentrations, as well as to the pK shift of two proton-linked ionizable groups.  相似文献   

3.
4.
Anion-binding exosite of human alpha-thrombin and fibrin(ogen) recognition   总被引:6,自引:0,他引:6  
Activation of prothrombin to alpha-thrombin generates not only the catalytic site and associated regions but also an independent site (an exosite) which binds anionic substances, such as Amberlite CG-50 resin [cross-linked poly(methylacrylic acid)]. Like human alpha-thrombin with high fibrinogen clotting activity (peak elution at I = 0.40 +/- 0.01 M, pH 7.4, approximately 23 degrees C), catalytically inactivated forms (e.g., i-Pr2P-alpha- and D-Phe-Pro-Arg-CH2-alpha-thrombins) were eluted with only slightly lower salt concentrations (I = 0.36-0.39 M), while gamma-thrombin with very low clotting activity was eluted with much lower concentrations (I = 0.29 M) and the hirudin complex of alpha-thrombin was not retained by the resin. In a similar manner, hirudin complexes of alpha-, i-Pr2P-alpha-, and gamma-thrombin were not retained by nonpolymerized fibrin-agarose resin. Moreover, the ionic strengths for the elution from the CG-50 resin of seven thrombin forms were directly correlated with those from the fibrin resin (y = 0.15 + 0.96x, r = 0.95). In other experiments, the 17 through 27 synthetic peptide of the human fibrinogen A alpha chain was not an inhibitor of alpha-thrombin, while the NH2-terminal disulfide knot (NDSK) fragment was a simple competitive inhibitor of alpha-thrombin with a Ki approximately 3 microM (0.15 M NaCl, pH 7.3, approximately 23 degrees C). These data suggest that alpha-thrombin recognizes fibrin(ogen) by a negatively charged surface, noncontiguous with the A alpha cleavage site but found within the NDSK fragment. Such interaction involving an anion-binding exosite may explain the exceptional specificity of alpha-thrombin for the A alpha cleavage in fibrinogen and alpha-thrombin incorporation into fibrin clots.  相似文献   

5.
This report documents attempts to mimic the rate enhancement effect of thrombomodulin on human alpha-thrombin-catalyzed activation of human protein C in the absence of exogenous calcium. Specifically the following tryptamine analogs at 1 mM concentration were shown to enhance the protein C activation rate relative to a control with no added effector at pH 8.3 (50 mM Tris-HCl, 0.1 M NaCl, 37 degrees C): serotonin, 1.2; tryptamine, 2.9; 5-fluorotryptamine, 4.4; 6-fluorotryptamine, 7.2. At much higher levels, e.g. 10 mM, all of the above effectors, as well as indole, showed a moderate inhibition of human protein C activation. ATP, a platelet release product, showed a sigmoidal inhibition pattern similar to that found previously for thrombin amidase, clotting, and esterase activity (Conery, B.G., and Berliner, L.J. (1983) Biochemistry 22, 369-375). Overall, the enhancement factors for human alpha-thrombin activation of protein C with the tryptamine analogs described above were remarkable when considering the effect of a simple ligand versus the natural activator, thrombomodulin.  相似文献   

6.
Thrombin is a Na(+)-activated enzyme.   总被引:7,自引:0,他引:7  
C M Wells  E Di Cera 《Biochemistry》1992,31(47):11721-11730
The amidase activity of human alpha-thrombin has been studied at steady state as a function of the concentration of several chloride salts, at a constant ionic strength I = 0.2 M. All kinetic steps of the catalytic mechanism of the enzyme have been solved by studies conducted as a function of relative viscosity of the solution. Among all monovalent cations, Na+ is the most effective in activating thrombin catalysis. This effect is observed with different amide substrates and also with gamma-thrombin, a proteolytic derivative of the native enzyme which has little clotting activity but retains amidase activity toward small synthetic substrates. The specific effects observed as a function of Na+ concentration are indicative of a binding interaction of this monovalent cation with the enzyme. The basis of this interaction has been explored by measurements of substrate hydrolysis collected in a three-dimensional matrix of substrate concentration, relative viscosity, and Na+ concentration, keeping the ionic strength constant with an inert cation such as choline or tetraethylammonium. The data have globally been analyzed in terms of a kinetic linkage scheme where Na+ plays the role of an allosteric effector. The properties of the enzyme change drastically upon binding of Na+, with substrate binding and dissociation, as well as deacylation, occurring on a time scale which is 1 order of magnitude faster. The apparent association constants for Na+ binding to the various intermediate forms of the enzyme have all been resolved from analysis of experimental data and are in the range of 50-100 M-1 at 25 degrees C. Studies conducted at different temperatures, in the range 15-35 degrees C, have revealed the enthalpic and entropic components of Na+ binding to the enzyme. The results obtained from steady-state measurements are supported by independent measurements of the intrinsic fluorescence of the enzyme as a function of Na+ concentration at a constant ionic strength I = 0.2 M, over the temperature range 15-35 degrees C. These measurements are indicative of a drastic conformational change of the enzyme upon Na+ binding to a single site. The energetics of Na+ binding derived from analysis of fluorescence measurements agree very well with those derived independently from steady-state determinations. It is proposed that thrombin exists in two conformations, slow and fast, and that the slow-->fast transition is triggered by binding of a monovalent cation. The high specificity in thrombin activation found in the case of Na+ is the result of its higher affinity compared to all other monovalent cations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In this study we report a kinetic model for the alpha-thrombin-catalyzed production of fibrin I and fibrin II at pH 7.4, 37 degrees C, gamma/2 0.17. The fibrin is produced by the action of human alpha-thrombin on plasma levels of human fibrinogen in the presence of the major inhibitor of alpha-thrombin in plasma, antithrombin III (AT). This model quantitatively accounts for the time dependence of alpha-thrombin-catalyzed release of fibrinopeptides A and B concurrent with the inactivation of alpha-thrombin by AT and delineates the concerted interactions of alpha-thrombin, fibrin(ogen), and AT during the production of a fibrin clot. The model also provides a method for estimating the concentration of alpha-thrombin required to produce a clot of known composition and predicts a direct relationship between the plasma concentration of fibrinogen and the amount of fibrin produced by a bolus of alpha-thrombin. The predicted relationship between the concentration of fibrinogen and the amount of fibrin produced in plasma provides a plausible explanation for the observed linkage between plasma concentrations of fibrinogen and the risk for ischemic heart disease.  相似文献   

8.
The steady-state kinetic parameters of human alpha-thrombin and the alpha-thrombin-staphylocoagulase complex as to the chromogenic substrate, H-D-Phe-Pip-Arg-p-nitroanilide (S-2238), were determined. At pH 8.0 and 37 degrees C, the Km values for alpha-thrombin and the complex for S-2238 were 7.9 microM and 7.7 microM, respectively. The kcat of this amidase reaction catalyzed by the complex was 127 s-1, which had apparently decreased from the kcat of 197 s-1 determined for free alpha-thrombin. This difference in the kinetic parameter between alpha-thrombin and the complex was also observed using the fluorogenic substrate, Boc-Val-Pro-Arg-4-methylcoumaryl-7-amide. Moreover, the fibrinogen clotting activity of the alpha-thrombin-staphylocoagulase complex was less than half that of alpha-thrombin, suggesting that the alpha-thrombin active site in the complex is different in catalytic ability from that of free alpha-thrombin. Other evidence supporting this view was as follows: The alpha-thrombin-staphylocoagulase complex is insensitive to antithrombin III, the complex shows much weaker binding to hirudin, as compared to free alpha-thrombin, and the amidase pH-profiles of the complex and free alpha-thrombin differ from each other. These results indicate that the microenvironment of the active site of alpha-thrombin is significantly altered by the complex formation with staphylocoagulase.  相似文献   

9.
In order to investigate ligand binding sites in alpha-thrombin that interact with nonpolymerized fibrin, fibrinogen was conjugated (with CNBr) to Sepharose 4B and converted to the nonpolymerized fibrin resin with alpha-thrombin. Human alpha-thrombin was bound to the resin at 22 degrees C and eluted with a linear NaCl gradient [50-300 mM in 50 mM tris(hydroxymethyl)aminomethane hydrochloride, pH 7.6] with midpeak elution occurring at an ionic strength that corresponds to 170 +/- 5 mM NaCl. Among various ligands examined, ATP and its analogues caused alpha-thrombin to elute with 125 mM or less salt. Apparent dissociation constants were estimated by the dependence of elution volume on ligand concentration. The most potent ligands for desorption from the column were anionic (e.g., adenine nucleotides), which also inhibit thrombin esterolytic/amidolytic and clotting activity [Conery, B. G., & Berliner, L. J. (1983) Biochemistry 22, 369-375]. The desorption series was at 10 mM concentrations: ATP = ADP greater than pyrophosphate greater than citrate greater than oxalate greater than PO4(3-). Contrastingly, serotonin and related apolar compounds did not cause dissociation of alpha-thrombin from the fibrin resin, even though several of these substances inhibit fibrinogen clotting and esterolytic/amidolytic activities of the enzyme. These data imply that independent sites for apolar and anionic binding in alpha-thrombin are required for converting fibrinogen into clottable fibrin and that alpha-thrombin-fibrin binding involves an anionic site.  相似文献   

10.
Human neutrophil cathepsin G or bovine chymotrypsin proteolytically cleaved human alpha-thrombin at the B-chain Trp148-Thr149 bond generating a new form, zeta-thrombin. While incubation of alpha-thrombin with cathepsin G at pH 7.4 and 37 degrees C resulted in a partial loss of fibrinogen clotting activity, 86 +/- 13% of the clotting activity and 99 +/- 16% of the active sites titratable with p-nitrophenyl p-guanidinobenzoate were retained upon controlled passage of alpha-thrombin through chymotrypsin-Sepharose 4B at pH 6.2 or 7.4 and 24 degrees C (n = 15). Kinetic parameters for H-D-hexahydrotyrosyl-Ala-Arg p-nitroanilide were Km = 1.52 +/- 0.60 vs 1.32 +/- 0.18 microM and kcat = 51.9 +/- 2.9 vs 35.8 +/- 6.4 s-1 with alpha-thrombin vs chymotrypsin-prepared zeta-thrombin (n = 4 vs 3), respectively (I = 0.15 M, pH 7.4, and 24 degrees C). Some 95% of the clotting activity was lost when zeta-thrombin was passed through trypsin-Sepharose 4B under conditions for converting alpha- to nonclotting beta- and subsequently gamma-thrombin. The resulting gamma-like thrombins eluted bimodally with 260 and 310 mM NaCl when applied to Amberlite CG-50 resin [cross-linked poly(methylacrylic acid)] developed with a linear salt gradient in 50 mM Tris at pH 7.4 and 24 degrees C. These elution peaks correspond to 240, 330, and 350 mM NaCl for gamma-, alpha-, and zeta-thrombin, respectfully, implying that the anion-binding exosite is partially destroyed in gamma-like thrombins but is intact in zeta-thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Kinetic studies of the inhibition of thrombin amidase activity by recombinant hirudin have been conducted as a function of salt concentration in the range 0.05 to 1 M, using NaCl, KCl, NaBr and KBr. At the same ionic strength, the value of KI for thrombin-hirudin interaction is found to be different with different salts. The slope d ln KI/d ln a+/-, where a+/- is the mean ion activity, is constant in the range 0.05 to 0.5 M, is sensitive to the particular salt present in solution and is equal to 1.07 +/- 0.09 (NaCl), 0.92 +/- 0.10 (KCl), 1.37 +/- 0.10 (NaBr) and 0.56 +/- 0.10 (KBr). These results indicate that specific ion effects are involved in the modulation of thrombin-hirudin interaction in the form of ion release, as recently found in the case of thrombin interaction with its natural substrate fibrinogen. The linkage hierarchy for ion release found in the case of thrombin-fibrinogen interaction also applies in the case of thrombin-hirudin interaction, with the number of released ions decreasing in the order NaBr greater than NaCl greater than KCl greater than KBr. It is proposed that the process of bridge-binding to the fibrinogen recognition site and the catalytic pocket of the enzyme, as seen in the case of fibrinogen and hirudin, is linked to ion release and controlled by modulation of the association rate constant.  相似文献   

12.
Equilibrium binding of human alpha-thrombin to heparin was investigated at pH 7.4 as a function of thrombin and heparin concentrations, NaCl concentration, temperature, and heparin chain length with the extrinsic fluorescence probe, p-aminobenzamidine, or by quantitative affinity chromatography, in order to distinguish between sequence-specific and nonspecific electrostatic modes of binding. Analysis of binding data by a nonspecific binding model developed for protein-nucleic acid interactions, or by the discrete binding site model previously used to analyze the thrombin-heparin interaction, indicated that both models described the binding interaction equally well over the range of thrombin binding densities accessible to measurement. However, the strong dependence of the thrombin-heparin binding interaction on NaCl concentration, its minimal dependence on temperature, and the increase in apparent binding affinity with increasing heparin oligosaccharide chain length were best accounted for by a nonspecific electrostatic association of thrombin with 5 to 6 anionic residues contained in a 3-disaccharide binding site of heparin. This interaction was characterized by an intrinsic dissociation constant (KD,obs) of 6-10 microM at physiological ionic strength. Although the nonspecific binding model satisfactorily described the binding of thrombin to heparin chains ranging in size from 3 to approximately 13 disaccharides in terms of a single intrinsic KD,obs, deviations from this model were apparent with longer heparin chains (approximately 22 to approximately 35 disaccharides) from a progressive decrease in the intrinsic KD,obs of up to 4-fold. Sedimentation equilibrium analyses of thrombin-heparin complexes suggested a second weaker binding site on thrombin for heparin, which accounted for these deviations as well as the observed insolubility of thrombin-heparin complexes at high thrombin binding densities.  相似文献   

13.
Energetics of thrombin-fibrinogen interaction.   总被引:1,自引:0,他引:1  
K P Hopfner  E Di Cera 《Biochemistry》1992,31(46):11567-11571
The kinetic mechanism of thrombin-fibrinogen interaction has been elucidated by steady-state measurements of synthetic substrate hydrolysis by human alpha-thrombin in the presence of human fibrinogen used as a competitive inhibitor and sucrose used as a viscogenic agent. Sucrose greatly affects the FKm for thrombin-fibrinogen interaction, without altering the intrinsic properties of the system. Under conditions of pH 7.5 and 0.1 M NaCl, fibrinogen behaves like a sticky substrate for thrombin, with acylation being comparable to dissociation in the temperature range 20-37 degrees C. In the same temperature range, deacylation is much faster than acylation. The van't Hoff enthalpy of binding for thrombin-fibrinogen interaction is -24 +/- 3 kcal/mol and the entropy is -55 +/- 11 cal mol-1 deg-1. A chemical compensation effect is present in the binding of fibrinogen and synthetic amide substrates to thrombin, with the delta H and delta G values being linked through a linear relationship.  相似文献   

14.
Nonclotting beta- and gamma-thrombins have been prepared by autolysis of human alpha-thrombin at pH 8.6 in the presence of 0.4 M NaCl and purified on BioRex 70. Reduced and carbamidomethylated A and B chains fragments were separated by gel filtration and reverse phase high performance liquid chromatography. Structural characterization of these fragments demonstrated that alpha to beta conversion results from two cleavages at Arg 62 and Arg 73 in the B chain, releasing an intact 11-residue peptide. beta to gamma conversion corresponds to the additional loss of a fragment of the B chain stretching from Ile 124 to Lys 154. Autolysis is not accompanied by cleavages in the A chain. Loss of clotting activity is therefore related solely to the excision of residues 63 to 73 in the B chain. With the exception of cleavage at Arg 73, these results differ from a proposed model for alpha to gamma conversion of bovine thrombin.  相似文献   

15.
The Mg2+-ATPase activity of myosin and its subfragment 1 (ATP phosphohydrolase, EC 3.6.1.3) always followed normal Michaelis-Menten kinetics for ATP concentrations less than 10 microM. The average Km values at pH 7.4 and 25 degrees C are 0.33 +/- 0.04 microM for myosin and 0.43 +/- 0.11 microM for subfragment 1. At low salt concentration myosin yields a second hyperbolic increase in Mg2+-ATPase activity as the ATP rises from 10.2 microM to 153 microM: V doubles with a Km of 11 +/- 5 microM. This second low-salt-dependent increase in Mg2+-ATPase activity occurred between pH 6.8 and pH 8.7. It was not affected by the presence of 0.10 M EGTA to remove Ca2+ contamination. Solubilization of the catalytic sites by assaying myosin for ATPase activity in the presence of 0.60 M NaCl or by conversion of myosin to subfragment 1 eliminated the secondary hyperbolic increase. Subfragment 1 has a significantly different pH-activity curve from that of myosin. Subfragment 1 has an activity peak at pH 6.0, a rising activity as the pH goes from 8.7 to 9.8, and a deep activity valley between pH 6.8 and pH 8.4. Myosin has a very shallow trough of activity at pH 6.8 to 8.4, and in 1.0 mM ATP its activity drops as the pH decreases from 6.8 to 6.0. NaCl is a noncompetitive inhibitor of the Mg2+-ATPase activity of myosin and subfragment 1. Myosin has a greater affinity for NaCl (Ki = 0.101 +/- 0.004 M) than does subfragment 1 (Ki = 0.194 +/- 0.009 M).  相似文献   

16.
Strains of Halobacteria from an Algerian culture collection were screened for their lipolytic activity against p-nitrophenyl butyrate (PNPB) and p-nitrophenyl palmitate (PNPP). Most strains were active on both esters and 12% hydrolyzed olive oil. A strain identified as Natronococcus sp. was further studied. It grew optimally at 3.5 M NaCl, pH 8 and 40 degrees C. An increase in temperature shifted the optimum salt concentration range for growth from a wider range of 2-4 M, obtained at 25-30 degrees C, to a narrower range of 3.5-4 M, obtained at 35-40 degrees C. At 45 degrees C the optimum salt concentration was 2 M. These results show a clear correlation between salt and temperature requirement. The optimum conditions for the production of hydrolytic activity during growth were: 3.5 M NaCl and pH 8 for PNPB hydrolytic activity and 4 M NaCl and pH 7.5 for PNPP hydrolytic activity; both at 40 degrees C. The clear supernatant of cells grown at 4 M NaCl showed olive oil hydrolysis activity (in presence of 4 M NaCl) demonstrating the occurrence of a lipase activity in this strain. To our knowledge, this is the first report of a lipase activity at such high salt concentration.  相似文献   

17.
Human thrombins. Production, evaluation, and properties of alpha-thrombin.   总被引:32,自引:0,他引:32  
Human alpha-thrombin, the thromboplastin activation product of prothrombin with high clotting and esterase activity, was produced from Cohn Fraction III paste. The procedure started with 0.4 to 3.2 kg of frozen paste and was completed in 2 or 3 days. Some 23 g of thrombin were recorded for 65 quantitated preparations made from 11 lots of Fraction III paste. These preparations were obtained at protein concentrations of 3.9 +/- 1.3 mg/ml with a yield of 340 +/- 110 mg/kg of paste, which represented 48 +/- 14% of the clotting potential extracted as prothrombin. They had specific clotting activities of 2.8 +/- 0.4 U.S. (NIH) units/microng of protein and titrated to 88 +/- 8% active with p-nitrophenyl-p'-guanidinobenzoate (NPGB). Those (N - 29) examined by labeling with [14C]diisopropyl phosphorofluoridate (iPr2P-F) and electrophoresing in sodium dodecyl sulfate (SDS)-polyacrylamide gels were found to contain only (N = 4) or predominantly alpha-thrombin (97 +/- 3%) and corresponding amounts of ists degradation product, beta-thrombin (2.6 +/- 3.1%). No plasmin(ogen), prothrombin complex factors (II, VII, IX, IXalpha, X, Xalpha), or prothrombin fragments were detected in representative preparations. As produced in 0.75 M NaCl, pH approximately 6, thrombin was stable for approximately 1 week at 4 degrees and for greater than 1 year at less than or equal to 50 degrees; freeze-dried thrombin stored at 4 degrees for greater than 1 year displayed stable clotting activity and no vial to vial variation, permitting its use for reference purposes. Human thrombin generated by Taipan snake venom activation was compared with that produced by rapid thromboplastin activation: after treatment with [14C]iPr2P-F, greater than 95% of the label in both thrombins migrated at the same rate during electrophoresis in SDS; identical pairs of NH2-terminal residues were released in three consecutive Edman degradation cycles.  相似文献   

18.
Bothrojaracin, a 27-kDa C-type lectin from Bothrops jararaca venom, is a selective and potent thrombin inhibitor (K(d) = 0.6 nM) which interacts with the two thrombin anion-binding exosites (I and II) but not with its catalytic site. In the present study, we analyzed the allosteric effects produced in the catalytic site by bothrojaracin binding to thrombin exosites. Opposite effects were observed with alpha-thrombin, which possesses both exosites I and II, and with gamma-thrombin, which lacks exosite I. On the one hand, bothrojaracin altered both kinetic parameters K(m) and k(cat) of alpha-thrombin for small synthetic substrates, resulting in an increased efficiency of alpha-thrombin catalytic activity. This effect was similar to that produced by hirugen, a peptide based on the C-terminal hirudin sequence (residues 54-65) which interacts exclusively with exosite I. On the other hand, bothrojaracin decreased the amidolytic activity of gamma-thrombin toward chromogenic substrates, although this effect was observed with higher concentrations of bothrojaracin than those used with alpha-thrombin. In agreement with these observaions, bothrojaracin produced opposite effects on the fluorescence intensity of alpha- and gamma-thrombin derivatives labeled at the active site with fluorescein-Phe-Pro-Arg-chloromethylketone. These observations support the conclusion that bothrojaracin binding to thrombin produces two different structural changes in its active site, depending on whether it interacts exclusively with exosite II, as seen with gamma-thrombin, or with exosite I (or both I and II) as observed with alpha-thrombin. The ability of bothrojaracin to evoke distinct modifications in the thrombin catalytic site environment when interacting with exosites I and II make this molecule an interesting tool for the study of allosteric changes in the thrombin molecule.  相似文献   

19.
Quiescent cultures of chick embryo fibroblasts incubated with human alpha-thrombin (14-219 pM) incorporated [methyl-3H]thymidine proportional to concentration. Inactivated forms of this protease (e.g. active-site-conjugated alpha-thrombin or its hirudin complex) had no mitogenic activity and did not compete with 124I-alpha-thrombin for binding to specific plasma membrane receptors. The noncoagulant but esterolytic active forms, gamma- and nitro-alpha-thrombins, were weakly mitogenic and correspondingly competed weakly for binding. Trypsin competed equally as well as native thrombin for binding, whereas chymotrypsin, elastase, and human urokinase competed with 80-fold less affinity. Plasma, arginine-specific proteases associated with nerve or epidermal growth factors, insulin, and insulin-like growth factors did not compete for binding. These data demonstrate that (a) functional catalytic residues of the thrombin active site are necessary for mitogenic activity and for specific binding; (b) regions adjacent to the active site, i.e. the high affinity protein recognition site, appear to enhance binding; and (c) the receptor can discriminate between other proteases and binds those which are also mitogens for the avian cells. The characteristics of 125I-alpha-thrombin binding were determined, and it was found to be (i) proportional to cell number; (ii) optimal at pH 6.8; (iii) 70-90% specific; (iv) at equilibrium after 60 min of incubation at 22-24 degrees C or 180 min at 0-4 degrees C (the rate constants for association, i.e. ka, at 22 and 4 degrees C were 18 and 1.1 x 10(7) M-1 min-1, respectively); and (v) essentially nondissociable. Nondissociable thrombin that bound during incubation at 0-4 degrees C was distributed equally between trypsin-sensitive and insensitive compartments. Thrombin associated with the former was released into the media when the cells were incubated at 0-4 degrees C with hirudin or hydroxylamine, or transferred to the insensitive compartment when incubated at 22 degrees C. Finally, confluent cultures of fibroblasts bind 2-3 x 10(4) 125I-alpha-thrombin molecules/cell with an apparent binding constant, i.e. Kd, of 0.7 nM (a true Kd could not be determined because of the irreversible nature of thrombin binding). The binding capacity per cell and the apparent Kd value increased proportionally to an increase in culture density.  相似文献   

20.
Covalent binding of thrombin to specific sites on corneal endothelial cells   总被引:3,自引:0,他引:3  
Binding of 125I-labeled human alpha-thrombin to endothelial cells derived from bovine corneas was studied in tissue culture. Specific and saturable binding to the cell surface occurred at 37 degrees C but to a much smaller extent at 4 degrees C. Binding of [125I]thrombin to a specific site on these cells with formation of a 77000-dalton complex was demonstrated by NaDodSO4 (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis. Binding of [125I]thrombin was blocked by a 100-fold excess of unlabeled alpha-thrombin and by the thrombin inhibitor, hirudin. There are approximately 100000 of these thrombin binding sites on the cell surface. Formation of the complex could be detected as early as 15 s, increased rapidly over the next 20-30 min, and then continued at a slower rate for the next 2.5 h. The catalytically active site of the enzyme was required for formation of the NaDodSO4-stable complex as shown by the inability of diisopropyl phosphorofluoride inactivated thrombin to form stable complexes with these cells. The complex was dissociated in NaDodSO4 with 1.0 M hydroxylamine, suggesting an acyl linkage of the enzyme to the cellular binding site. The thrombin-endothelial cell complex was distinct from the thrombin-antithrombin III complex (Mr approximately 90000) on gel electrophoresis, and its formation was not enhanced by heparin. Additional thrombin-cell complexes (Mr less than 77000) were also identified; however, they represent a small fraction of the total thrombin bound to the cells. These observations demonstrate that alpha-thrombin is capable of reacting specifically with corneal endothelial cells to form a NaDod-SO4-stable complex which requires the catalytically active enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号