首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apple has two orthologues of FLORICAULA/LEAFY involved in flowering   总被引:9,自引:0,他引:9  
Two orthologues of FLORICAULA/LEAFY, AFL1 and AFL2 (apple FLO/LFY), were isolated from the floral buds of apple trees. Their expression was detected in various tissues and during differentiation of the floral buds. Furthermore, the flowering effectiveness of each gene was assessed with transgenic Arabidopsis. Both AFL1 and AFL2 showed high homology to each other (90%) and a high degree of similarity to PTLF and PEAFLO (70%), which are homologues of FLO/LFY from poplar and pea, respectively. RNA blot analysis showed that AFL1 was expressed only in the floral bud during the transition from vegetative to reproductive growth, whereas AFL2 was expressed in vegetative shoot apex, floral buds, floral organs and root. Genomic Southern analysis showed that apple had other homologues in addition to AFL1 and AFL2. The transgenic Arabidopsis with over-expressed AFL2 showed accelerated flowering and gave rise to several solitary flowers from rosette axils directly. AFL1 had similar effects, but the phenotypes of the transgenic Arabidopsis with AFL1 were weaker than those with AFL2. These results suggest that both genes are involved in flower differentiation in apple.  相似文献   

2.
The apple (Malus?×?domestica Borkh.) is one of the commercially important fruit crops in the worldwide. The apple has a relatively long juvenile period (up to 4?years) and a long reproductive period between the flower initiation and the mature fruit (14?C16?months), which prevent the fruit breeding. Therefore, the understanding of the flowering system is important to improve breeding efficiency in the apple. In this study, to examine the temporal and spatial expression patterns of the floral genes, MdTFL1, MdAP1 (MdMASD5), AFL2, and MdFT, we conducted in situ hybridization analysis in the apple shoot apex. In vegetative phase, MdTFL1 was expressed on the rib meristem zone. When vegetative meristem began converting into inflorescence meristem, the expression level of MdTFL1 was drastically decreased. At the early stage of inflorescence meristem, the expression levels of AFL2, MdFT, and MdAP1 were up-regulated in the leaf primordia and the upper region of cell layers on the shoot apex. In late stage, the expression levels of AFL2 and MdAP1 were up-regulated in the young floral primordia. At a more advanced stage, high expression of MdAP1 was observed in the inflorescence primordium through the inner layer of sepal primordia and the outer layer of receptacle primordia and floral axis. Our results suggest that AFL2, MdFT, and MdAP1 affect to convert from the vegetative meristem into the inflorescence meristem after the decline of MdTFL1 expression. After that, AFL2 and MdAP1 promote the formation of the floral primordia and floral organs.  相似文献   

3.
4.
Recent molecular analyses in several plant species revealedthat TERMINAL FLOWER1 (TFL1) and CENTRORADIALIS (CEN) homologsare involved in regulating the flowering time and/or maintainingthe inflorescence meristem. In apple (Malusxdomestica Borkh.),four TFL1/CEN-like genes, MdTFL1, MdTFL1a, MdCENa and MdCENb,were found and mapped by a similar position on putatively homoeologouslinkage groups. Apple TFL1/CEN-like genes functioned equivalentlyto TFL1 when expressed constitutively in transgenic Arabidopsisplants, suggesting that they have a potential to complementthe TFL1 function. Because MdTFL1 and MdTFL1a were expressedin the vegetative tissues in both the adult and juvenile phases,they could function redundantly as a flowering repressor anda regulator of vegetative meristem identity. On the other hand,MdCENa was mainly expressed in fruit receptacles, cultured tissuesand roots, suggesting that it is involved in the developmentof proliferating tissues but not in the control of the transitionfrom the juvenile to the adult phase. In contrast, MdCENb wassilenced in most organs probably due to gene duplication bythe polyploid origin of apple. The expression patterns of MdTFL1and MdCENa in apple were also supported by the heterologousexpression of β-glucuronidase fused with their promoterregions in transgenic Arabidopsis. Our results suggest thatfunctional divergence of the roles in the regulation of vegetativemeristem identity may have occurred among four TFL1/CEN-likegenes during evolution in apple.  相似文献   

5.

Background and Aims

Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering.

Methods

First defruiting experiments were performed to manipulate blossoming intensity in ‘Moncada’ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages.

Key Results

Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage.

Conclusions

These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to occur, their absence strongly affects the activity of floral promoters and identity genes.  相似文献   

6.
Rosaceae is a large family, however, our understanding of its phylogeny is based largely on morphological observations. To understand the relationship between subfamilies Rosoideae, Amygdaloideae, Maloideae and Spiraeoideae at a molecular level, we isolated and compared the plant phosphatidyl ethanolamine-binding protein-like genes TERMINAL FLOWER1 (TFL1)-like and CENTRORADIALIS (CEN)-like, which are involved in the control of shoot meristem identity and flowering time. A comparison of gene structures and phylogenetic tree analyses by the Neighbor-Joining method showed that each of the two TFL1-like (MdTFL1-1 and MdTFL1-2) and CEN-like genes (MdCENa and MdCENb) in Maloideae were classified into two distinct clades. The TFL1-like and CEN-like genes of Gillenia in Spiraeoideae belonged to monophyletic Maloideae groups, suggesting that Gillenia and Maloideae have a common near ancestor. However, the Gillenia TFL1-like gene does not contain the insertion sequence of the third intron that is found in MdTFL1-2-like genes of the members of Maloideae such as apple, Korean whitebeam, quince, and Siberian mountain ash. Therefore, after the Maloideae ancestor genome became polyploid through hybridization between Gillenia-like species or genome doubling, an insertion sequence of the third intron of MdTFL1-2-like genes was generated.  相似文献   

7.
Gene frequencies were investigated in the -Est1 locus between Japanese populations of Panonychus citri occurring on some fruit trees and on the garden trees, Osmanthus trees and Ilex crenata. A new allele, A 3, was found in the -Est1 of populations collected on Osmanthus trees. Populations on I. crenata, Citrus unshiu and Pyrus serotina had one or both A 1 and A 2 alleles. However, the populations on Osmanthus trees had only the A 3 allele and did not vary geographically.  相似文献   

8.
9.
D. V. Shepard  K. G. Moore 《Planta》1978,138(1):35-39
Cucumber (Cucumis sativus L.) and pear (Pyrus domestica Medik.) fruit proplastids, and pea (Pisum sativum L., cv. Meteor) leaf chloroplasts, extracted by osmotic rupture of protoplasts isolated after degradation of the cell walls by cellulase and pectinase, agglutinated in the presence of Con A. Agglutination of cucumber proplastids was inhibited by anti-Con A and by methyl D-gluco/manno pyranosides but not by methyl D-galactopyranoside. Fluorescein isothiocyanate-conjugated Con A (FITC-Con A) rendered agglutinated clumps fluorescent. If cellulase was omitted from the macerating medium, Con A-mediated agglutination did not occur even if proplatids were subsequently incubated with cellulase. Proplastids and chloroplasts extracted by conventional mechanical disruption methods were not agglutinated by Con A and did not acquire fluorescence with FITC-Con A. However, cucumber proplastids so extracted could be agglutinated by Con A if incubated with cellulase after preparation.Abbreviation Con A Concanavalin A (Jackbean phytohemagglutinin)  相似文献   

10.

Background and Aims

The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators.

Methods

Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (β-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype.

Key Results

A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants.

Conclusions

The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression.  相似文献   

11.
In this study, in planta transformation of tomato (Solanum lycopersicum L.), using fruit injection and floral dip, is reported. Agrobacterium tumefaciens strain EHA 105 containing one of three constructs, i.e., pROKIIAP1GUSint (carrying the Apetala 1 [AP1] gene), pROKIILFYGUSint (carrying the LEAFY [LFY] gene), or p35SGUSint (carrying the β-glucuronidase [GUS] gene), was used for plant transformation. For fruit injection transformation, no significant effects (p > 0.05) of the construct used were observed. The highest frequency of transformation was obtained following 48-h incubation of tomato fruit with bacterial cells harboring either one of the three constructs; transformation frequencies of 17%, 19%, and 21% for AP1, LFY, and GUS gene constructs, respectively, were obtained. When fruit maturity was evaluated in fruit injection experiments, mature red fruit resulted in higher frequency of transformants than immature green fruit with 40%, 35%, and 42% for AP1, LFY, and GUS gene constructs, respectively. For floral dip transformation, a higher number of transformants was obtained when the GUS gene construct was used instead of either the AP1 or LFY gene construct, thus suggesting a possible inhibitory effect of the flowering genes used. When flowers were transformed prior to rather than following pollination, they yielded a higher transformation frequency, 12% for the LFY construct and 23% for the GUS construct (p < 0.05), although no transformant was obtained with the AP1 gene construct. All putative GUS-positive transformants were analyzed using polymerase chain reaction and confirmed for the presence of the transgene. Compared to control plants, transgenic plants carrying either the AP1 or LFY transgene flowered earlier and showed several different morphological characters.  相似文献   

12.
Dong A  Ye M  Guo H  Zheng J  Guo D 《Biotechnology letters》2003,25(4):339-344
Of 49 microbial strains screened for their capabilities to transform ginsenoside Rb1, Rhizopus stolonifer and Curvularia lunata produced four key metabolites: 3-O-[-d-glucopyranosyl-(1,2)--d-glucopyranosyl]- 20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ene (1), 3-O-[-d-glucopyranosyl-(1,2)--d- glucopyranosyl]-20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ol (2), 3-O-[-d-gluco- pyranosyl-(1,2)--d-glucopyranosyl]-3, 12, 20(S)-trihydroxydammar-24-ene (3), and 3-O--d-glucopyranosyl-3, 12, 20(S)-trihydroxydammar-24-ene (4), identified by TOF-MS, 1H- and 13C-NMR spectral data. Metabolites 1, 3 and 4 were from the incubation with R. stolonifer, and 1 and 2 from the incubation with C. lunata. Compound 2 was identified as a new compound.  相似文献   

13.
Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-14C]adenine and [8-14C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue. The nucleotide sequence data reported here have been deposited in the GenBank database under the accession numbers AB297451 (CjCS1), AB362882 (CgCS1), AB362883 (CgCS2), AB362884 (CkCS1), AB362885 (ClCS1), and AB362886 (CcCS2).  相似文献   

14.
Japanese pear (Pyrus pyrifolia Nakai) has a gametophytic self-incompatibility (GSI) mechanism controlled by a single S-locus with multiple S-haplotypes, each of which contains separate genes that determine the allelic identity of pistil and pollen. The pistil S gene is the S-ribonuclease (S-RNase) gene, whereas good candidates for the pollen S gene are the F-box protein genes. A self-compatible (SC) cultivar, ‘Osa-Nijisseiki’, which is a bud mutant of ‘Nijisseiki’ (S 2 S 4), has a stylar-part mutant -haplotype, which lacks the S 4-RNase gene but retains the pollen S gene. To delineate the deletion breakpoint in the -haplotype, we constructed a bacterial artificial chromosome (BAC) library from an S 4-homozygote, and assembled a BAC contig of 570 kb around the S 4-RNase. Genomic PCR of DNA from S 4- and -homozygotes and the DNA sequence of the BAC contig allowed the identification of a deletion of 236 kb spanning from 48 kb upstream to 188 kb downstream of S 4-RNase. The -haplotype lacks 34 predicted open reading frames (ORFs) including the S 4-RNase and a pollen-specific F-box protein gene (termed as S 4 F-box0). Genomic PCR with a primer pair designed from the deletion junctions yielded a product specific for the -haplotype. The product could be useful as a maker for early selection of SC cultivars harboring the -haplotype. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
Fruits and seeds of four anemochorous taxa ofRhamnaceae-Gouanieae were studied by SEM. Flight performance of diaspores of three genera was analyzed. Diverging postfloral morphogeneses lead to different fruit and diaspore types: (1) a solid schizocarp dehiscing into three 2-winged mericarps (Gouania, Crumenaria), (2) an inflated schizocarp dehiscing into three inflated mericarps (Reissekia), and (3) a hollow septicide capsule which releases three winged hemimericarps (Alvimiantha). The latter convey significantly heavier seeds thanGouania andReissekia at comparable fall rates. The generic status ofAlvimiantha is confirmed. The Neotropics are pointed out as being a site of strong adaptive radiation for the tribeGouanieae.  相似文献   

17.

Background

Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communis and Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal) and Pyrus rootstocks (seedling or clonal) have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC) and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg) and micro element (Fe, Zn, Cu, Mn and B) content of ‘Santa Maria’ pear (Pyrus communis L.) were investigated.

Results

Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree−1), largest trunk cross-sectional area (TCSA), lowest yield efficiency and lowest cumulative yield (ton ha−1) in the 10th year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B) was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season.

Conclusion

The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of ‘Santa Maria’ pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for ‘Santa Maria’ pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant), K, Ca, Mg, Fe and Cu mineral element concentrations on the pear seedling and BA 29 rootstocks. According to the results, we recommend the seedling rootstock for normal density plantings (400 trees ha−1) and BA 29 rootstock for high-density plantings (800 trees ha−1) for ‘Santa Maria’ pear cultivar in semi-arid conditions.  相似文献   

18.
Food-seaching workers of eastern yellow jackets, Vespula maculifrons, are attracted by the natural odors of a wide variety of succulent fruits; particularly effective was pear. The only part of a fruit that repelled was the leathery epicarp of oranges. After rewarding with sugar water, odors of six fruits, including the pulpy mesocarp of oranges and, in addition, the leaves of catmint Nepeta cataria, all become highly attractive. To learn the distinctive odors of any one of three fruits (pear, apple, quince), nondiscrimination training with a rewarded fruit was sufficient for the subsequent olfactory preference of the training fruit over the control fruit. In the other cases [banana, hawthorn (Crataegus crus-galli), grape] simultaneous discrimination training with a rewarded and an unrewarded fruit was necessary and effective for obtaining differential responses to the odors of the training fruits. As far as current evidence goes, olfactory learning plays similar roles in the fruit foraging of this wasp and in the nectar foraging of the honey bee (Apis mellifera).  相似文献   

19.
苯丙氨酸解氨酶(phenylalanin ammonia-lyase,PAL,EC4.3.1.5)是植物通过苯丙烷代谢途径合成木质素的关键酶和限速酶,其通过影响木质素的合成而与果实中石细胞的分化、发育及果实品质密切相关。为了降低鸭梨中苯丙氨酸解氨酶的含量,该研究利用反义PAL基因遗传转化鸭梨、降低鸭梨内源PAL基因的表达。结果表明:(1)采用RT-PCR技术,利用根据Gen Bank中西洋梨PAL基因序列设计特异性引物,扩增得到496 bp的鸭梨PAL基因片段。(2)将扩增片段反向插入载体p BI121的MCS区域,构建植物PAL基因反义表达载体p BI121-As PAL。接着采用电转化法将反义表达载体转入农杆菌EHA105中,并制备出农杆菌工程菌液。(3)利用农杆菌介导法对鸭梨组培苗叶片外植体进行遗传转化,得到23株转基因鸭梨苗。PCR检测证实PAL反义基因片段转入鸭梨中,实时定量PCR检测表明转基因鸭梨苗体内PAL基因表达量均有所降低,为非转基因苗的65%~75%。该研究结果表明利用反义RNA技术获得了抑制内源性PAL基因表达的转基因鸭梨植株,为改善鸭梨果实品质、改良品种奠定了基础。  相似文献   

20.
The seasonal cycle and persistence of a plant is governed by a combination of the determinate or indeterminate status of shoot and root apical meristems. A perennial plant is one in which the apical meristem of at least one of its shoot axes remains indeterminate beyond the first growth season.TERMINAL FLOWER1 (TFL1) genes play important roles in regulating flowering time, the fate of inflorescence meristem and perenniality. To investigate the role of TFL1-like genes in the determination of the apical meristems in an industrially important crop cultivated for its fibers, we isolated and characterized two TFL1 homologs (TFL1a and TFL1b) from tetraploid cultivated cotton (Gossypium hirsutum) and its diploid progenitors (Gossypium arboreum and Gossypium raimondii). All isolated genes maintain the same exon–intron organization. Their phylogenetic analysis at the amino acid level confirmed that the isolated sequences are TFL1-like genes and collocate in the TFL1 clade of the PEBP protein family. Expression analysis revealed that the genes TFL1a and TFL1b have slightly different expression patterns, suggesting different functional roles in the determination of the meristems. Additionally, promoter analysis by computational methods revealed the presence of common binding motifs in TFL1-like promoters. These are the first reported TFL1-like genes isolated from cotton, the most important crop for the textile industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号