首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ath6 is a novel quantitative trait locus associated with differences in susceptibility to atherosclerosis between C57BL/6J (B6) and C57BLKS/J (BKS) inbred mouse strains. Combining data from an intercross and a backcross (1593 meioses) between mice from B6 and BKS strains and from The Jackson Laboratory interspecific backcross panels, (C57BL/6J ×Mus spretus) F1× C57BL/6J and (C57BL/6J × SPRET/Ei) F1× SPRET/Ei, we constructed a consensus genetic map and narrowed Ath6 to a 1.07 ± 0.26 cM interval between the anonymous DNA marker D12Pgn4 and the gene Nmyc1. This region is near the proximal end of murine Chromosome (Chr) 12, which is homologous to the human chromosomal region 2p24-p25. Marker order in the Ath6 region was concordant among the two crosses and The Jackson Laboratory interspecific backcross panels. This high resolution map rules out candidate genes encoding apolipoprotein B, syndecan 1, and Adam17. The two Ath6 crosses have a combined potential resolution of 0.06 cM. Received: 12 September 2000 / Accepted: 22 February 2001  相似文献   

2.
Ath29 is an atherosclerosis susceptibility locus on chromosome 9 identified in an intercross between C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. This locus was subsequently replicated in two separate intercrosses that developed early or advanced atherosclerotic lesions. The objective of this study was to characterize Ath29 through construction and analysis of a congenic strain and identify underlying candidate genes. A congenic line was constructed by introgressing the chromosomal segment harboring Ath29 from C3H.apoE(-/-) into B6.apoE(-/-) mice. Congenic mice developed significantly smaller early and advance atherosclerotic lesions than B6.apoE(-/-) mice. Microarray analysis revealed 317 genes to be differentially expressed in the aorta of congenic mice compared with B6.apoE(-/-) mice. Pathway analysis of these genes suggested the Ca(2+) signaling pathway to be implicated in regulating atherosclerosis susceptibility. Rcn2 is located underneath the linkage peak of Ath29 and involved in Ca(2+) signaling. Multiple single-nucleotide polymorphisms between B6 and C3H mice were detected within and surrounding Rcn2 with one single-nucleotide polymorphism falling within an upstream cAMP response element. Immunostaining demonstrated its expression in atherosclerotic lesions. Knockdown of Rcn2 with small interfering RNAs resulted in significant reductions in both baseline and oxidized phospholipid-induced VCAM-1 and monocyte chemoattractant protein-1 expression by endothelial cells. Ath29 is confirmed to be a major atherosclerosis susceptibility locus affecting both early and advanced lesion formation in mice, and Rcn2 is identified as a novel regulator of cytokine expression.  相似文献   

3.
Inbred SPRET/Ei mice, derived from Mus spretus, were found to be extremely resistant to infection with a mouse adapted influenza A virus. The resistance was strongly linked to distal chromosome 16, where the interferon-inducible Mx1 gene is located. This gene encodes for the Mx1 protein which stimulates innate immunity to Orthomyxoviruses. The Mx1 gene is defective in most inbred mouse strains, but PCR revealed that SPRET/Ei carries a functional allele. The Mx1 proteins of M. spretus and A2G, the other major resistant strain derived from Mus musculus, share 95.7% identity. We were interested whether the sequence variations between the two Mx1 alleles have functional significance. To address this, we used congenic mouse strains containing the Mx1 gene from M. spretus or A2G in a C57BL/6 background. Using a highly pathogenic influenza virus strain, we found that the B6.spretus-Mx1 congenic mice were better protected against infection than the B6.A2G-Mx1 mice. This effect may be due to different Mx1 induction levels, as was shown by RT-PCR and Western blot. We conclude that SPRET/Ei is a novel Mx1-positive inbred strain useful to study the biology of Mx1.  相似文献   

4.
Ghazalpour A  Wang X  Lusis AJ  Mehrabian M 《Genetics》2006,173(2):943-951
We previously mapped a locus on chromosome 6 with a large effect (LOD > 6) on aortic lesion size in a (C57BL/6J x CAST/Ei) F(2) cross and identified arachidonate 5-lipoxygenase (5LO) as a candidate gene in this region. Subsequent studies with the 5LO knockout model showed effects on atherosclerosis and aortic aneurysms. We now report detailed genetic analysis of the chromosome 6 locus. We created a panel of overlapping and reciprocal subcongenic lines from the B6.CAST Ldlr(-/-) chromosome 6 congenic strain (CON6.Ldlr(-/-)) and analyzed aortic lesion size in different subcongenic lines. Our results revealed that there are at least two subregions, designated as Ath37 and Ath38 that affect the size of aortic lesions independently of 5LO. We also showed that homozygote 5LO null mice develop smaller atherosclerotic lesions. We conclude that the relation between the mouse chromosome 6 locus and atherosclerosis is complex and is due to at least two genes with large effects within this region. This complexity should be considered when interpreting results of knockout studies.  相似文献   

5.
Genetic background affects polyp development in the Multiple intestinal neoplasia (Apc(Min)) mouse model. The Modifier of Min 1 (Mom1) locus accounts for approximately 50% of the variation in polyp multiplicity. We generated reciprocal congenic lines, such that the recipient C57BL/6J (B6) strain carries a donor C3H/HeJ (C3H) Mom1 allele, and the recipient C3H strain carries a donor B6 Mom1 allele. Hybrid progeny from congenic females mated to B6 Apc(Min/+) males were analyzed. A single C3H Mom1 locus on the B6 background reduced small intestinal polyp numbers by 50% and colon polyp incidence by 66% compared to their susceptible B6 Mom1(S/S)Apc(Min/+) siblings. These findings show that the C3H genome contains a resistant Mom1(R) locus. The reciprocal congenic line, which carries the susceptible B6 Mom1(S) locus on the C3H background, reduced small intestinal polyp numbers by 80% and colon polyp incidence by 95% compared to B6 Mom1(S/S)Apc(Min/+) mice. These data demonstrate that unidentified modifiers in the C3H strain can suppress intestinal polyp multiplicity in Apc(Min/+) mice, and act in the absence of a resistant Mom1(R) locus.  相似文献   

6.
The human polymorphism in the hepatic enzyme N-acetyltransferase (NAT) affects the rate at which individuals acetylate, and in many cases detoxify, aromatic amine and hydrazine drugs and xenobiotics. Differences in NAT activity are known to affect individual susceptibility to drug toxicities and are thought to play a part in some spontaneous disorders. A mouse model for the human acetylation polymorphism has been previously characterized and involves the A/J (slow acetylator) and C57BL/6J (rapid acetylator) inbred strains. Strain distribution analysis of 40 A x B and B x A recombinant inbred (RI) strains indicated linkage between the N-acetyltransferase gene (Nat) and the esterase 1 (Es-1) gene, located on mouse chromosome 8. A double backcross involving 107 animals confirmed the recombination frequency between Nat and Es-1 to be 12 +/- 3% (mean +/- SE). The information obtained in the backcross and RI studies was combined, yielding a 13 +/- 2.8% (mean +/- SD) recombination frequency. The Es-1 genotype was determined in our newly developed congenic strains A.B6-Natr and B6.A-Nats. The B6.A-Nats strain has the Es-1 genotype of its inbred partner, the B6 strain, and the A.B6-Natr strain has the Es-1 genotype of the donor strain. These congenic strains will be important in determining the role of the NAT genotype in susceptibility to arylamine-induced cancer and other disorders.  相似文献   

7.
Meiotic recombination is required for the orderly segregation of chromosomes during meiosis and for providing genetic diversity among offspring. Among mammals, as well as yeast and higher plants, recombination preferentially occurs at highly delimited chromosomal sites 1–2 kb long known as hotspots. Although considerable progress has been made in understanding the roles various proteins play in carrying out the molecular events of the recombination process, relatively little is understood about the factors controlling the location and relative activity of mammalian recombination hotspots. To search for trans-acting factors controlling the positioning of recombination events, we compared the locations of crossovers arising in an 8-Mb segment of a 100-Mb region of mouse Chromosome 1 (Chr 1) when the longer region was heterozygous C57BL/6J (B6) × CAST/EiJ (CAST) and the remainder of the genome was either similarly heterozygous or entirely homozygous B6. The lack of CAST alleles in the remainder of the genome resulted in profound changes in hotspot activity in both females and males. Recombination activity was lost at several hotspots; new, previously undetected hotspots appeared; and still other hotspots remained unaffected, indicating the presence of distant trans-acting gene(s) whose CAST allele(s) activate or suppress the activity of specific hotspots. Testing the activity of three activated hotspots in sperm samples from individual male progeny of two genetic crosses, we identified a single trans-acting regulator of hotspot activity, designated Rcr1, that is located in a 5.30-Mb interval (11.74–17.04 Mb) on Chr 17. Using an Escherichia coli cloning assay to characterize the molecular products of recombination at two of these hotspots, we found that Rcr1 controls the appearance of both crossover and noncrossover gene conversion events, indicating that it likely controls the sites of the double-strand DNA breaks that initiate the recombination process.  相似文献   

8.
9.
Lambda clones of mouse DNA from BALB/c and C57BL/10, each containing an array of telomere hexamers, were localized by FISH to a region close to the telomere of Chr 13. Amplification of mouse genomic DNA with primers flanking SSRs within the cloned DNA showed several alleles, which were used to type eight sets of RI strains. The two lambda clones contained allelic versions of the interstitial telomere array, Tel-rs4, which is 495 bp in C57BL/10 and which includes a variety of sequence changes from the consensus telomere hexamer. Comparison of the segregation of the amplification products of the SSRs with the segregation of other loci in an interspecies backcross (C57BL/6JEi × SPRET/Ei) F1× SPRET/Ei shows recombination suppression, possibly associated with ribosomal DNA sequences present on distal Chr 13 in Mus spretus, when compared with recombination in an interstrain backcross, (C57BL/6J × DBA/J) F1× C57BL/6J, and with the MIT F2 intercross. Analysis of recombination in females using a second interstrain backcross, (ICR/Ha × C57BL/6Ha) F1× C57BL/6Ha, also indicates recombination suppression when compared with recombination in males of the same strains, using backcross C57BL/6Ha × (ICR/Ha × C57BL/6Ha) F1. Thus, more than one cause may contribute to recombination suppression in this region. The combined order of the loci typed was D13Mit37–D13Mit30–D13Mit148–(D13Rp1, 2, 3, 4, Tel-rs4)–D13Mit53–D13Mit196–D13Mit77–(D13Mit78, 35). Data from crosses where apparently normal frequencies of recombination occur suggest that the telomere array is about 6 map units proximal to the most distal loci on Chr 13. This distance is consistent with evidence from markers identified in two YAC clones obtained from the region. Received: 24 September 1996/Accepted: 20 January 1997  相似文献   

10.
Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS‐10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS‐10 and B6. We then produced congenic strains to fine‐map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121–129.068 Mb; build 37) appeared to account for all the difference between CSS‐10 and B6. The smaller congenic strain (Line 2: 127.277–129.068 Mb) was intermediate between CSS‐10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis‐eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two‐stage approaches that seek to use coarse mapping to identify large regions followed by fine‐mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine‐mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine‐mapping QTLs .  相似文献   

11.
The joggle mouse is a recessive ataxic mutant carrying an unknown mutation in a C3H/He (C3H)-derived chromosomal segment. Taking advantage of the mouse genome database, we selected 127 DNA microsatellite markers showing heterozygosity between C3H and C57BL/6J (B6) and a first round of screening for the joggle mutation was performed on B6-jog/+ partial congenic mice (N4). We identified 4 chromosomal regions in which 13 microsatellite markers show heterozygosity between C3H and B6. Then, we analyzed the genotype of these 4 chromosomal regions in mice that showed the joggle phenotype and mapped the jog locus between markers D6Mit104 (111.4 Mb) and D6Mit336 (125.1 Mb) (an interval of 13.7 Mb) on chromosome 6. By using a partial congenic strain together with the mouse genome database, we successfully mapped the chromosomal localization of the jog locus much more efficiently than by conventional linkage analysis.  相似文献   

12.
Peak bone density is an important determining factor of future osteoporosis risk. We previously identified a quantitative trait locus (QTL) that contributes significantly to high bone density on mouse chromosome 1 from a cross between C57BL/6J (B6) and CAST/EiJ (CAST) mouse strains. We then generated a congenic strain, B6.CAST-1T, in which the chromosomal fragment containing this QTL had been transferred from CAST to the B6 background. The congenic mice have a significantly higher bone density than the B6 mice. In this study we performed cDNA microarray analysis to evaluate the gene expression profile that might yield insights into the mechanisms controlling the high bone density by this QTL. This study led to several interesting observations. First, approximately 60% of 8,734 gene accessions on GEM I chips were expressed in the femur of B6 mice. The expression and function of two-thirds of these expressed genes and ESTs have not been documented previously. Second, expression levels of genes related to bone formation were lower in congenic than in B6 mice. These data are consistent with a low bone formation in the congenic mice, a possibility that is confirmed by reduced skeletal alkaline phosphatase activity in serum compared with B6 mice. Third, expression levels of genes that might have negative regulatory action on bone resorption were higher in congenic than in B6 mice. Together these findings suggest that the congenic mice might have a lower bone turnover rate than B6 mice and raise the possibility that the high bone density in the congenic mice could be due to reduced bone resorption rather than increased bone formation. Electronic Publication  相似文献   

13.
Analysis of homologous recombination in eukaryotes has shown that some meiotic crossing-over occurs preferentially at specific genomic sites of limited physical distance called recombinational hotspots. In the mouse, recombinational hotspots have only been defined in the major histocompatibility complex (MHC) on chromosome (Chr) 17. In an attempt to examine whether hotspots are unique to the MHC or are present throughout the genome, high-resolution linkage maps of Chr 17 based on five backcrosses involving different inbred strains have been generated. These maps separate many markers that were previously shown at the same map position and allow a detailed analysis of recombination patterns across Chr 17. Corresponding recombination intervals in these maps have been compared for the identification of intervals with very little or no recombination in certain genetic crosses and considerable recombination in other genetic crosses. This approach has been termed Recombination Interval Analysis. Possible haplotype-dependent non-MHC hotspots, as well as previously identified MHC hotspots, have been detected by interval analysis. Received: 1 December 1997/ Accepted: 27 February 1998  相似文献   

14.
CDR3 regions containing two D segments, or containing the footprints of V(H) replacement events, have been reported in both mice and humans. However, the 12-23 bp rule for V(D)J recombination predicts that D-D rearrangements, which would occur between 2 recombination signal sequences (RSSs) with 12-bp spacers, should be extremely disfavored, and the cryptic RSS used for V(H) replacement is very inefficient. We have previously shown that newborn mice, which lack TdT due to the late onset of its expression, do not contain any CDR3 with D-D rearrangements. In the present study, we test our hypothesis that most D-D rearrangements are due to fortuitous matching of the second apparent D segment by TdT-introduced N nucleotides. We analyzed 518 sequences from adult MRL/lpr- and C57BL/6 TdT-deficient B cell precursors and found only two examples of CDR3 with D-D rearrangements and one example of a potential V(H) replacement event. We examined rearrangements from pre-B cells, marginal zone B cells, and follicular B cells from mice congenic for the Lbw5 (Sle3/5) lupus susceptibility loci and from other strains of mice and found very few examples of CDR3 with D-D rearrangements. We assayed B progenitor cells, and cells enriched for receptor editing, for DNA breaks at the "cryptic heptamer" but such breaks were rare. We conclude that many examples of apparent D-D rearrangements in the mouse are likely due to N additions that fortuitously match short stretches of D genes and that D-D rearrangements and V(H) replacement are rare occurrences in the mouse.  相似文献   

15.
More than 150 individual members of 16 ribosomal protein multigene families were identified as DNA restriction fragments and genetically mapped. The ribosomal protein gene-related sequences are widely dispersed throughout the mouse genome. Map positions were determined by analysis of 144 progeny mice from both an interspecific (C57BL/6J × SPRET/Ei)F1 × SPRET/Ei and an intersubspecific (C57BL/6J × CAST/Ei)F1 × C57BL/6J backcross. In addition, 30 members of the multigene families encoding PGK1 ODC, and TPI, including five new loci for ODC and one new locus for TPI, were characterized and mapped. Interspecific backcross linkage data for 29 nonecotropic murine leukemia retroviruses endogenous to C57BL/6J mice are also reported. Transmission ratio distortions and recombination frequencies are compared between the two backcrosses.  相似文献   

16.
Systemic lupus erythematosus is inherited as a complex polygenic trait. Four genomic intervals containing major SLE-susceptibility loci were previously identified by interval mapping in the NZM2410 mouse model. In this paper, we utilized a marker-assisted selection protocol to produce four congenic mouse strains, each carrying an NZM2410-derived SLE-susceptibility interval on a C57BL/6-resistant background. Each strain carries only one susceptibility allele derived from this polygenic model and consequently can be used to characterize the specific component phenotypes contributed by individual SLE-susceptibility genes. We illustrate the efficacy of this approach with phenotypic data for one of our congenic strains, B6.NZMH2 z . Our results indicate that this single genomic interval from Chromosome (Chr) 17 of NZM2410 can mediate increased levels of IgG autoantibodies specific for chromatin and that, similar to results obtained in our original genetic cross, B6.NZMH2 z/b heterozygotes are more prone than B6.NZMH2 z homozygotes to the development of humoral autoimmunity to nuclear antigens. These results illustrate the feasibility of using congenic strains to dissect the complex pathogenic mechanisms that mediate polygenic SLE. These congenic strains will be valuable tools in the genetic analysis of SLE susceptibility. In future studies, these congenic strains will be interbred to produce bi- and tri-congenic strains in order to assess the role of genetic interactions in the expression of specific components of SLE pathogenesis. They will also be instrumental to the positional cloning and identification of the genes responsible for SLE susceptibility, via the production of congenic recombinants. Received: 1 September 1995 / Accepted: 20 December 1995  相似文献   

17.
Bone morphogenetic protein 2 (BMP2) is a growth factor that initiates osteoblast differentiation. Recent studies show that BMP2 signaling regulates bone mineral density (BMD). BMP2 interacts with BMP receptor type Ia (BMPRIa) and type II receptor leading to the activation of the Smad signaling pathway. BMPRIa must shuttle between distinct plasma membrane domains, enriched of Caveolin‐1 alpha and Caveolin‐1 beta isoforms, and receptor activation occurs in these domains. Yet it remains unknown whether the molecular mechanism that regulates BMP2 signaling is driving mineralization and BMD. Therefore, the B6.C3H‐1‐12 congenic mouse model with increased BMD and osteoblast mineralization was utilized in this study. Using the family image correlation spectroscopy, we determined if BMP2 led to a significant re‐localization of BMPRIa to caveolae of the alpha/beta isoforms in bone marrow stromal cells (BMSCs) isolated from B6.C3H‐1‐12 mice compared to the C57BL/6J mice, which served as controls. The control, C57BL/6J mice, was selected due to only 4 Mb of chromosome 1 from the C3H/HeJ mouse was backcrossed to a C57BL/6J background. Using reporter gene assays, the B6.C3H‐1‐12 BMSCs responded to BMP2 with increased Smad activation. Furthermore, disrupting caveolae reduced the BMP2‐induced Smad signaling in BMSCs isolated from B6.C3H‐1‐12 and C57BL/6J. This study suggests for the first time a regulatory mechanism of BMPRIa signaling at the plasma membrane of BMSCs that (i) associated with genetic differences in the distal Chromosome 1 segment carried by the B6.C3H‐1‐12 congenic and (ii) contributes to increase BMD of the B6.C3H‐1‐12 compared to the C57BL/6J control mice. J. Cell. Physiol. 227: 2870–2879, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1-2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2x higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.  相似文献   

19.
Li J  Lu Z  Wang Q  Su Z  Bao Y  Shi W 《Physiological genomics》2012,44(6):345-351
Bglu3 is a quantitative trait locus for fasting glucose on distal chromosome 1 identified in an intercross between C57BL/6 (B6) and C3H/HeJ (C3H) apolipoprotein E-deficient (apoE(-/-)) mice. This locus was subsequently replicated in two separate mouse intercrosses. The objective of this study was to characterize Bglu3 through construction and analysis of a congenic strain and identify underlying candidate genes. Congenic mice were constructed by introgressing a genomic region harboring Bglu3 from C3H.apoE(-/-) into B6.apoE(-/-) mice. Mice were started with a Western diet at 6 wk of age and maintained on the diet for 12 wk. Gene expression in the liver was analyzed by microarrays. Congenic mice had significantly higher fasting glucose levels and developed more significant glucose intolerance compared with B6.apoE(-/-) mice on the Western diet. Microarray analysis revealed 336 genes to be differentially expressed in the liver of congenic mice. Further pathway analysis suggested a role for acute phase response signaling in regulating glucose intolerance. Apcs, encoding an acute phase response protein serum amyloid P (SAP), is located underneath the linkage peak of Bglu3. Multiple single nucleotide polymorphisms between B6 and C3H mice were detected within and surrounding Apcs. Apcs expression in the liver was significantly higher in congenic and C3H mice compared with B6 mice. The Western diet consumption led to a gradual rise in plasma SAP levels, which was accompanied by rising fasting glucose in both B6 and C3H apoE(-/-) mice. Expression of C3H Apcs in B6.apoE(-/-) mice aggravated glucose intolerance. Bglu3 is confirmed to be a locus affecting diabetes susceptibility, and Apcs is a probable candidate gene.  相似文献   

20.
Inbred strains of mice differ in their susceptibility to excitotoxin‐induced cell death, but the genetic basis of individual variation is unknown. Prior studies with crosses of the FVB/NJ (seizure‐induced cell death susceptible) mouse and the seizure‐induced cell death resistant mouse, C57BL/6J, showed the presence of three quantitative trait loci (QTLs), named seizure‐induced cell death 1 (Sicd1) to Sicd3. To better localize and characterize the Sicd2 locus, two reciprocal congenic mouse strains were created. While the B6.FVB‐Sicd2 congenic mouse was without effect on modifying susceptibility to seizure‐induced excitotoxic cell death, the FVB.B6‐Sicd2 congenic mouse, in which the chromosome (Chr) 15 region of C57BL/6J was introgressed into FVB/NJ, showed reduced seizure‐induced excitotoxic cell death following kainate administration. Phenotypic comparison between FVB and the congenic FVB.B6‐Sicd2 strain confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure‐induced excitotoxic cell death. Interval‐specific congenic lines (ISCLs) that encompass Sicd2 on Chr 15 were generated and were used to fine‐map this QTL. Resultant progeny were treated with kainate and examined for the extent of seizure‐induced cell death in order to deduce the Sicd2 genotypes of the recombinants through linkage analysis. All of the ISCLs exhibited reduced cell death associated with the C57BL/6J phenotype; however, ISCL‐2 showed the most dramatic reduction in seizure‐induced cell death in both area CA3 and in the dentate hilus. These findings confirm the existence of polymorphic loci within the reduced critical region of Sicd2 that regulate the severity of seizure‐induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号