首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
The metabolism of GA10 is thought to be under photoperiodic control in the woody plant Salix pentandra . However, in a recent study using 16,17-[3H2]GA19 as a mimic of Ga10, no effect of photoperiod was found on its metabolism to 16,17-dihydro-GA20 and 16,17-dihydro-GA1. To investigate if this was due to differential action of exogenous 16,17-dihydro-GAs and GAs, the effects of the 16,17-dihydro-derivatives of the gibberellins GA19, GA1, and GA1 as compared with their parent GAs, on shoot elongation in seedlings of S. pentandra were studied. 16,17-Dihydro-GA19, and -GA20 were both almost inactive, while 16,17-dihydro-GA1 induced some shoot elongation in seedlings treated with ancymidol as well as under short days. GA19, GA20 and GA1 were all able to counteract the inhibitory effect of ancymidol under continuous light, while inhibition induced by a 12-h photoperiod was antagonised only by GA20 and GA1. Thus, the growth-stimulating activity of the tested GAs is significantly reduced by 16,17-dihydro derivatisation, but the derivatives do not inhibit stem elongation in S, pentandra , as has been found in monocotyledons.  相似文献   

2.
Effects of gibberellins A1, A4/7, A9, A19 and A20 and growth retardants were studied on shoot elongation in seedlings of Salix pentandra L. The growth-retarding effects of CCC and ancymidol were antagonized by all the gibberellins tested. The novel plant growth regulator prohexadione (free acid of BX-112), which is suggested to block 3β-hydroxylation of gibberellins, effectively prevented shoot elongation in seedlings grown under long photoperiod. Initiation of new leaves was only slightly reduced. GA1, but not GA19 and GA20, was active in overcoming the inhibition of stem elongation of seedlings, treated with prohexadione, GA19, GA20 and GA1 are native in S. pentandra , and the results are compatible with the hypothesis that GA1 is active per se in shoot elongation, and that the effect of GA19 and GA20 is dependent on their conversion to GA1.
A mixture of GA4 and GA7 was as active as GA1 in promoting shoot elongation in seedlings treated with prohexadione, while GA9 showed slight activity only when applied at high doses.  相似文献   

3.
Gibberellins GA1, GA8. GA19. GA29. GA20 and GA56 (2-epi-GA8). were identified by combined gas chromatography-mass spectrometry in root extracts of elongating Salix pentandra L. seedlings. The presence of GA8 was also demonstrated for the first time in S. pentandra shoots. The levels of GA1, GA8, GA19, GA20 in shoot tissue and in roots were estimated by selected ion monitoring. While the amounts of GA8 and GA19 were similar in both plant parts. the levels of the biologically active GA1 and its immediate precursor GA20. were found to be much lower in roots than in shoots.  相似文献   

4.
By application of a recently developed method allowing analysis of gibberellins (GAs) in mg amounts of tissue, the effect of photoperiod on levels of GAs in shoot tips of individual seedlings of the woody species Salix pentandra was studied. In elongating long day-grown seedlings, maximum levels of GA1 were found 5–20 mm below the apex, approximately twice the levels in other segments. After exposure of plants to 5 or 15 short days, the levels of GA1 were about 50% lower within this specific region of the stem, as compared with seedlings grown under long days. Short day-induced cessation of shoot elongation also correlated with overall declines in the levels of GA53, GA19, GA20 and GA8, Within each photoperiodic treatment the levels of these GAs were generally relatively similar throughout the upper 35 mm of stems. No differences in internode lengths or in lengths of pith or epidermal cells were found in plants grown under long days compared with those exposed to 5 short days. In both cases, cells in mitosis were observed in the subapical stem tissues of shoot tips. After 15 short days, stem elongation was completed, and dividing cells were generally not found in the subapical part of the stem. However, short day exposure did not prevent elongation of internodes and cells differentiated before the treatment was started. Thus, the localised decrease in level of GA1 in shoot tips under short days precedes the morphological and anatomical changes connected with the short day-induced cessation of elongation growth. This supports the hypothesised role for GA1 in photoperiodic control of shoot elongation in S. pentandra .  相似文献   

5.
Gibberellins and photoperiodic control of shoot elongation in Salix   总被引:1,自引:0,他引:1  
Effects of exogenous gibberellins GA53, GA44, GA19, GA20 and GA1 on photoperiodically controlled shoot elongation in seedlings of Salix pentandra L. were studied. Gibberellins GA20 and GA1 induced shoot elongation under short days (SD) and could substitute for a transfer to long day (LD), while gibberellins A53, A44 and A19 were inactive. In seedlings exposed to a prolonged SD-treatment (30 days) there was a significant positive interaction between a transfer to LD and a treatment with GA20 and GA1 on shoot elongation. In addition, GA19 enhanced the growth promotive effect of LD in these seedlings. The results are compatible with the suggestion that conversion of GA19 to GA20 is blocked under SD. This effect is supposed to be an early process leading to the cessation of shoot elongation under SD. Responsiveness of the seedlings to LD and to a GA-treatment gradually decreased with an increasing length of exposure to SD.  相似文献   

6.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

7.
The extreme dwarf d x tomato ( Lycopersicon esculentum Mill.) mutant has very short internodes which were found to contain shorter and fewer epidermal cells. The leaves are highly abnormal. The mutant showed a substantial stem growth response to GA3, without approaching normal stature or morphology. The active gibberellin GA1 and its precursors GA19 and GA20 were identified by coupled gas chromatography-mass spectrometry (GC/MS) in d x shoots. Quantitative GC/MS revealed that GA20 accumulated to far higher levels than normal in stems and leaves of the mutant.  相似文献   

8.
The relative growth rate of pot-grown plants of Poa pratensis L. cv. Holt, origin 69s°N, was increased by 20–40% by photoperiod extension with low intensity incandescent light from 8 to 24 h at 9–21°C. The main increase occurred over the 14 to 18 h photoperiod range. The true photoperiodic nature of the response was demonstrated by the effectiveness of night interruption in stimulating growth. Fortnightly sprayings with gibberellic acid (GA3) (3 × 10-6 to 3 × 10-5 M ) mimicked all the effects of long days, whereas (2-chloroethyl)-trimethylammonium chloride (CCC) counteracted the effects of long days. Both growth substances exhibited pronounced interactions with photoperiod, GA3 being most effective in short days and CCC in long days. The growth stimulation, whether caused by long days or GA3, was exerted mainly through increases in individual and total leaf area. This was associated with a reduction in CO2, exchange rate and a parallel fall in specific leaf weight. Proportionally, however, the increase in leaf area was greater than the fall in CO2 exchange rate, resulting in a 38 to 118% increase in photosynthesis per leaf. No evidence was found of any direct and promotive effect of transition to long days on the CO2 exchange rate of already expanded leaves.  相似文献   

9.
Cessation of shoot elongation in seedlings of Salix pentandra L. is induced by short photoperiod. Gibbereliin A9 (GA9) applied either to the apical bud or injected into a mature leaf, induced shoot elongation under a short photoperiod of 12 h, and GA9 could completely substitute for a transfer to a long photoperiod. When [3H]GA9 or [2H2]GA9 was injected into a leaf, no [3H]GA9 was detected in the elongating apex and only traces of [3H]GA9 were found in the shoot above the treated leaf. By the use of gas chromatography-mass spectrometry (GC-MS), [2H2]GA20 was identified as the main metabolite of [2H2]GA9 in both the shoot and the treated leaf. In addition, [2H2]GA1 and [2H2]GA29 were also identified as metabolites of [2H2]GA9. These results are consistent with the hypothesis that exogenous GA, promotes shoot elongation in Salix through its metabolism to GA20 and GA,.  相似文献   

10.
Extracts of Douglas fir ( Pseudotsuga menziesii [Mirb.] Franco) shoots were purified by reversed and normal phase HPLC; gibberellin (GA)-like compounds detected by radioimmunoassay with antibodies against GA4 and the Tan-ginbozu dwarf rice micro-drop biossay were analyzed by GC-MS. Three major components were identified as GA4, GA7, and GA9 while smaller amounts of GA1, GA3 and putative GA9-glucosyl ester were also present.  相似文献   

11.
Fifteen different gibberellins (GA's) were tested for their ability to induce elongation growth under short day conditions in seedlings of Salix pentandra L. GA's were applied either to the apex or they were injected into a mature leaf. GA3 was highly active and also GA4+7 and GA4 showed high activity. GA1, GA2, GA5, GA9, GA13, GA20, GA36 and GA47 showed moderate activity. GA16, GA17, GA27 and GA41 exhibited low or no activity in doses up to 10 μg per plant. In general, a better growth response was obtained with an application to the apex than with an injection into the leaf.  相似文献   

12.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3) on K+ (Rb+) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+, the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels.  相似文献   

13.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

14.
Endogenous gibberellins (GAs) were extracted and purified from apical buds of Eucalyptus nitens (Deane and Maid.) Maid. and the cambial region of E. globulus (Labill.). then analysed by capillary gas chromatography-mass spectrometry. GA1 GA19 GA20 and GA29 were identified by full scan mass spectra. Kovats retention indices and high resolution selected ion monitoring. Using deuterated internal standards. GA1. GA19. GA20 and putative GA29 and GA53 were quantified in the apical buds, while GA4. GA8. GA9 and GA44 were shown to be either absent or present at very low levels. From the cambial region. GA1 and GA20 were quantified at levels of 0.30 ng (g fresh weight)-1 and 8.8 ng (g fresh weight)-1 respectively. These data suggest that the early 13-hydroxylation pathway is the dominant pathway for GA biosynthesis in Eucalyptus .  相似文献   

15.
Three-week-old shoots of the spring oilseed rape cv. Petranova ( Brassica napus L. ssp. napus ) were found by combined gas chromatography-mass spectrometry to contain GA1, GA8, GA15, GA17, GA19, GA20, GA24, GA29, 3-epi-GA1 and a previously uncharacterised C19 dicarboxylic acid that is probably structurally related to GA24. Shoots of the winter cultivar Belinda, harvested at the early flowering stage, contained the same GAs with the exception of the C19 dicarboxylic acid and, in addition, GA34 and GA51 were identified. All material contained higher levels of GA20 than of GA1; the ratio of GA1 to GA20 was highest in shoots containing the largest proportion of young immature tissues. Soil treatment of cv. Petranova seedlings with the growth retardant BAS 111¨W [1-phenoxy-5,5-dimethyl-3-(1,2,4-triazol-1-yl)-hexan-4-ol] caused 80% reduction in height 18 days after treatment and the levels of all GAs were 20% or less that of control plants. Foliar treatment at the same dosage reduced height by 50% and caused an 85% or greater reduction in the concentrations of the GA1 precursors GA20, GA19 and GA44. However, the levels of GA1, GA8 and GA29 were affected to a much smaller extent. Foliar application of BAS 111¨W to cv. Belinda 1 month after sowing resulted in only a 20% height reduction at flowering, but no uniform decrease in the concentrations of endogenous GAs at this stage.  相似文献   

16.
Apical cuttings of Solanum tuberosum L. cv. Sirtema were used al different stages of development to study long-distance transport of phosphate. The effects of two hormones, gibberellic acid (GA3) and abscisic acid (ABA), on this process were also investigated. Before tuberization, phosphate (32P) supplied to a single leaf was transported preferentially in the young and growing parts of the plant: apical bud, young leaves and roots. After tuberization, the tuber became the principal site of phosphate accumulation. GA3 treatment (10−4 M) of the tuber as well as of the leaves led to reduced transport of 32P into the tuber. By contrast, treatment of the tuber with ABA (10−4M) did not change the 32P distribution within the plant, while foliar spray with ABA greatly increased the transport into the tuber. The opposite effects of the two hormones on phosphate accumulation by tubers are discussed with regard to their opposite effects on the tuberization process.  相似文献   

17.
Effect of gibberellic acid (GA3) on leaf sheath elongation in a normal (cv. Møystad) and a gibberellin(GA)-insensitive (cv. Siete Cerros) genotype of wheat ( Triticum aestivum L.) were studied at 18 and 12°C under short (SD, 12 h) or long (LD, 24 h) photoperiod. Leaf sheath length in cv. Møystad was signficantly increased by exogenous GA3 both under SD and LD. LD alone stimulated leaf sheath elongation and the combined effect of LD and GA3 was additive, and there was no statistically signficant interaction between photoperiod and GA3 concentrations. Leaf sheath length in cv. Siete Cerros was not significantly affected by GA3 under any conditions. However, there was a highly significant stimulation of leaf sheath elongation by LD in cv. Siete Cerros as well. These results indicate that stimulation of elongation growth in wheat leaves by LD is not mediated by gibberellin.  相似文献   

18.
Gibberellic acid (GA3) applied at different times during the growth of wild carrot ( Daucus carota ssp. Carota ) cell suspension cultures inhibited anthocyanin accumulation. Application of 3 × 10–6 M GA3 to cultures on day 0 or day 4 gave, respectively, 10 or 35% of anthocyanin accumulation relative to levels occurring when GA3 was applied at the end of the growth period. Endogenous GAs were separated by high pressure liquid chromatography, and identified and quantified by gas chromatography-selected ion monitoring. Gibberellins GA1, GA3 and traces of GA8. GA19 and GA20 were identified in carrot cell suspension cultures of both high and low anthocyanin-accumulating clones. The concentrations of GA1. GA3 and GA8 in the two clones were similar and were not significantly different after the application of uniconazole which promoted anthocyanin accumulation. This suggests that these endogenous GAs are not the sole factors controlling the accumulation of anthocyanin in these different clones. Exogenous GA3 and uniconazole had no effect on 3'-nucleotidase and 5'-nucleotidase activity in the carrot cell suspension cultures. Thus 3'-nucleotidase does not appear to play a role in the inhibition of anthocyanin accumulation by exogenous GA3.  相似文献   

19.
The plant-growth-promoting rhizobacteria (PGPR), Bacillus pumilus and Bacillus licheniformis, isolated from the rhizosphere of alder ( Alnus glutinosa [L.] Gaertn.) have a strong growth-promoting activity. Bioassay data showed that the dwarf phenotype induced in alder seedlings by paclobutrazol (an inhibitor of gibberellin [GA] biosynthesis) was effectively reversed by applications of extracts from media incubated with both bacteria and also by exogenous GA3. Full-scan gas chromatography-mass spectrometry analyses on extracts of these media showed the presence of GA1, GA3, GA4and GA20, in addition to the isomers 3- epi -GA1 and iso -GA3. Isotope dilution analysis indicated that epi -GA1 was an artefact. Likewise, iso -GA3 is also probably an artifact spontaneously formed during extraction and/or analysis. In both culture media, GA1 was present in higher concentrations (130–150 ng ml−1) than GA3 (50–60 ng ml−1), GA4 (8–12 ng ml−1) and GA20 (2–3 ng ml−1). The data indicated that culture of both bacteria accumulate bioactive C19-gibberellins in relative high amounts and that these GAs appear to be physiologically active in the host plant. The evidence suggests that the promotion of stem elongation induced by the PGPR could be mediated by bacterial GAs.  相似文献   

20.
Gibberellins A1 (GA1), GA4, GA9, GA19, and GA20 were identified in extracts of leaves of Begonia x cheimantha Everett cv. Nova (Christmas or Lorraine Begonia). GA-like substances were purified by reverse phase and normal phase high performance liquid chromatography (HPLC) and detected by Tan-ginbozu dwarf rice bioassay and binding to antibodies raised against GA1, GA4 and GA9. The final identifications were made by gas chromatography—mass spectrometry (GC-MS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号