首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bicarbonate, an activating anion of ATP hydrolysis, inhibited ATP synthesis coupled to succinate oxidation in beef heart submitochondrial particles but diminished the lag time and increased the steady-state velocity of the (32)Pi-ATP exchange reaction. The latter effects exclude the possibility that bicarbonate is inducing an intrinsic uncoupling between ATP hydrolysis and proton translocation at the level of F(1)F(o) ATPase. The inhibition of ATP synthesis was competitive with respect to ADP at low fixed [Pi], mixed at high [Pi] and non-competitive towards Pi at any fixed [ADP]. From these results we can conclude that (i) bicarbonate does not bind to a Pi site in the mitochondrial F(1); (ii) it competes with the binding of ADP to a low-affinity site, likely the low-affinity non-catalytic nucleotide binding site. It is postulated that bicarbonate stimulates ATP hydrolysis and inhibits ATP synthesis by modulating the relative affinities of the catalytic site for ATP and ADP.  相似文献   

2.
In medium containing 40% dimethylsulfoxide, soluble F1 catalyzes the hydrolysis of ATP introduced at concentrations lower than that of the enzyme [Al-Shawi, M.K. & Senior, A.E. (1992), Biochemistry 31, 886-891]. At this concentration of dimethylsulfoxide, soluble F1 also catalyzes the spontaneous synthesis of a tightly bound ATP to a level of approximately 0.15 mol per mol F1 [Gómez-Puyou, A., Tuena de Gómez-Puyou, M. & de Meis, L. (1986) Eur. J. Biochem. 159, 133-140]. The mechanisms that allow soluble F1 to carry out these apparently opposing reactions were studied. The rate of hydrolysis of ATP bound to F1 under uni-site conditions and that of synthesis of ATP were markedly similar, indicating that the two ATP molecules lie in equivalent high affinity catalytic sites. The number of enzyme molecules that have ATP at the high affinity catalytic site under conditions of synthesis or uni-site hydrolysis is less than the total number of enzyme molecules. Therefore, it was hypothesized that when the enzyme was treated with dimethylsulfoxide, a fraction of the F1 population carried out synthesis and another hydrolysis. Indeed, measurements of the two reactions under identical conditions showed that different fractions of the F1 population carried out simultaneously synthesis and hydrolysis of ATP. The reactions continued until an equilibrium level between F1.ADP + Pi <--> F1.ATP was established. At equilibrium, about 15% of the enzyme population was in the form F1.ATP. The DeltaG degrees of the reaction with 0.54 microM F1, 2 mM Pi and 10 mM Mg2+ at pH 6.8 was -2.7 kcal.mol-1 in favor of F1.ATP. The DeltaG degrees of the reaction did not exhibit important variations with Pi concentration; thus, the reaction was in thermodynamic equilibrium. In contrast, DeltaG degrees became significantly less negative as the concentration of dimethylsulfoxide was decreased. In water, the reaction was far to the left. The equilibrium constant of the reaction diminished linearly with an increase in water activity. The effect of solvent is fully reversible. In comparison to other enzymes, F1 seems unique in that solvent controls the equilibrium that exists within an enzyme population. This results from the effect of solvent on the partition of Pi between the catalytic site and the medium, and the large energetic barrier that prevents release of ATP from the catalytic site. In the presence of dimethylsulfoxide and Pi, ATP is continuously hydrolyzed and synthesized with formation and uptake of Pi from the medium. This process is essentially an exchange reaction analogous to the phosphate-ATP exchange reaction that is catalyzed by the ATP synthase in coupled energy transducing membranes.  相似文献   

3.
Vacuolar-type H(+)-ATPase (V-ATPase) catalyzes ATP synthesis and hydrolysis coupled with proton translocation across membranes via a rotary motor mechanism. Here we report biochemical and biophysical catalytic properties of V-ATPase from Thermus thermophilus. ATP hydrolysis of V-ATPase was severely inhibited by entrapment of Mg-ADP in the catalytic site. In contrast, the enzyme was very active for ATP synthesis (approximately 70 s(-1)) with the K(m) values for ADP and phosphate being 4.7 +/- 0.5 and 460 +/- 30 microm, respectively. Single molecule observation showed V-ATPase rotated in a 120 degrees stepwise manner, and analysis of dwelling time allowed the binding rate constant k(on) for ATP to be estimated ( approximately 1.1 x 10(6) m(-1) s(-1)), which was much lower than the k(on) (= V(max)/K(m)) for ADP ( approximately 1.4 x 10(7) m(-1) s(-1)). The slower k(on)(ATP) than k(on)(ADP) and strong Mg-ADP inhibition may contribute to prevent wasteful consumption of ATP under in vivo conditions when the proton motive force collapses.  相似文献   

4.
The H(+)-ATPase from chloroplasts, CF(0)F(1), was isolated and purified. The enzyme contained one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-(32)P]AD(T)P leads to a tight binding of the azido-nucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and after UV-irradiation, the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-(32)P]ADP, the covalently bound label was found exclusively at beta-Tyr-362, i.e. binding occurs only to catalytic sites. Incubation conditions with 2-azido-[alpha-(32)P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, either to catalytic site 2 or to catalytic site 3. For measurements of the degree of inhibition by covalent modification, CF(0)F(1) was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K(+)/valinomycin diffusion potential. The rate of ATP synthesis was 120 s(-1), and the rate of ATP hydrolysis was 20 s(-1), both measured under multi-site conditions. Covalent modification of either catalytic site 2 or catalytic site 3 inhibited both ATP synthesis and ATP hydrolysis, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that modification of one catalytic site, either site 2 or site 3, is sufficient to completely block multi-site ATP synthesis and ATP hydrolysis. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with covalently modified CF(0)F(1) and with non-modified CF(0)F(1). The result was that uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent modification of either catalytic site 2 or site 3. The results indicate cooperative interactions between catalytic nucleotide binding sites during multi-site catalysis, whereas neither uni-site ATP synthesis nor uni-site ATP hydrolysis require interaction with other sites.  相似文献   

5.
The oxygen exchange parameters for the hydrolysis of ATP by the F1-ATPase have been determined over a 140,000-fold range of ATP concentrations and a 5,000-fold range of reaction velocity. The average number of water oxygens incorporated into each Pi product ranges from a limit of about 1.02 at saturating ATP concentrations to a limit of about 3.97 at very low ATP concentrations. The latter value represents 400 reversals of hydrolysis of bound ATP prior to Pi dissociation. In accord with the binding change mechanism, this means that ATP binding at one catalytic site increases the off constant of Pi and ADP from another catalytic site by at least 20,000-fold, equivalent to the use of 6 kcal mol-1 of ATP binding energy to promote product release. The estimated rate of reversal of hydrolysis of F1-ATPase-bound ATP to bound ADP + Pi varies only about 5-fold with ATP concentration. The rate is similar that observed previously for reversal of bound ATP hydrolysis or synthesis with the membrane-bound enzyme and is greater than the rate of net ATP formation during oxidative phosphorylation. This adds to evidence that energy input or membrane components are not required for bound ATP synthesis.  相似文献   

6.
We have studied the kinetics of "unisite" ATP hydrolysis and synthesis in seven mutant Escherichia coli F1-ATPase enzymes. The seven mutations are distributed over a 105-residue segment of the catalytic nucleotide-binding domain in beta-subunit and are: G142S, K155Q, K155E, E181Q, E192Q, M209I, and R246C. We report forward and reverse rate constants and equilibrium constants in all seven mutant enzymes for the four steps of unisite kinetics, namely (i) ATP binding/release, (ii) ATP hydrolysis/synthesis, (iii) Pi release/binding, and (iv) ADP release/binding. The seven mutant enzymes displayed a wide range of deviations from normal in both rate and equilibrium constants, with no discernible common pattern. Notably, steep reductions in Kd ATP were seen in some cases, the value of Kd Pi was high, and K2 (ATP hydrolysis/synthesis) was relatively unaffected. Significantly, when the data from the seven mutations were combined with previous data from two other E. coli F1-beta-subunit mutations (D242N, D242V), normal E. coli F1, soluble and membranous mitochondrial F1, it was found that linear free energy relationships obtained for both ATP binding/release (log k+1 versus log K1) and ADP binding/release (log k-4 versus log K-4). Two conclusions follow. 1) The seven mutations studied here cause subtle changes in interactions between the catalytic nucleotide-binding domain and substrate ATP or product ADP. 2) The mitochondrial, normal E. coli, and nine total beta-subunit mutant enzymes represent a continuum in which subtle structural differences in the catalytic site resulted in changes in binding energy; therefore insights into the nature of energy coupling during ATP hydrolysis and synthesis by F1-ATPase may be ascertained by detailed studies of this group of enzymes.  相似文献   

7.
Catalytic site forms and controls in ATP synthase catalysis   总被引:6,自引:0,他引:6  
A suggested minimal scheme for substrate binding by and interconversion of three forms of the catalytic sites of the ATP synthase is presented. Each binding change, that drives simultaneous interchange of the three catalytic site forms, requires a 120 degrees rotation of the gamma with respect to the beta subunits. The binding of substrate(s) at two catalytic sites is regarded as sufficing for near maximal catalytic rates to be attained. Although three sites do not need to be filled for rapid catalysis, during rapid bisite catalysis some enzyme may be transiently present with three sites filled. Forms with preferential binding for ADP and P(i) or for ATP are considered to arise from the transition state and participate in other steps of the catalysis. Intermediate forms and steps that may be involved are evaluated. Experimental evidence for energy-dependent steps and for control of coupling to proton translocation and transition state forms are reviewed. Impact of relevant past data on present understanding of catalytic events is considered. In synthesis a key step is suggested in which proton translocation begins to deform an open site so as to increase the affinity for ADP and P(i), that then bind and pass through the transition state, and yield tightly bound ATP in one binding change. ADP binding appears to be a key parameter controlling rotation during synthesis. In hydrolysis ATP binding to a loose site likely precedes any proton translocation, with proton movement occurring as the tight site form develops. Aspects needing further study are noted. Characteristics of the related MgADP inhibition of the F(1) ATPases that have undermined many observations are summarized, and relations of three-site filling to catalysis are assessed.  相似文献   

8.
The substrate kinetics and the role of free Mg(2+) and free ATP were studied in membrane-bound F(1)-ATPase from crayfish (Orconectes virilis) gills. It was shown that the MgATP complex was the true substrate for the ATPase activity with a K(m) value of 0.327 mM. In the absence of bicarbonate, the maximum azide-sensitive activities in the presence and absence (<18 microM) of free ATP were 0.878 and 0.520 micromol P(i)/mg protein/min, respectively, while the maximum bicarbonate-stimulated activity in absence of free ATP was 1.486 micromol P(i)/mg protein/min. Free ATP was a competitive inhibitor (K(i)=0.77 mM) and free Mg(2+) was a mixed inhibitor (K(i)=0.81 mM, K(i)'=5.89 mM). However, free ATP also acted as an activator. Lineweaver-Burk plots for MgATP hydrolysis at high free Mg(2+) concentrations exhibited an apparent negative cooperativity, which was not the case for high free ATP levels. These results suggest that, although free ATP inhibited the enzyme by binding to catalytic sites, it stimulated ATPase activity by binding to non-catalytic sites and promoted the dissociation of inhibitory MgADP from the catalytic site.  相似文献   

9.
Steady-state ATP hydrolysis in the F1-ATPase of the F(O)F1 ATP synthase complex involves rotation of the central gamma subunit relative to the catalytic sites in the alpha3beta3 pseudo-hexamer. To understand the relationship between the catalytic mechanism and gamma subunit rotation, the pre-steady-state kinetics of Mg x ATP hydrolysis in the soluble F1-ATPase upon rapid filling of all three catalytic sites was determined. The experimentally accessible partial reactions leading up to the rate-limiting step and continuing through to the steady-state mode were obtained for the first time. The burst kinetics and steady-state hydrolysis for a range of Mg x ATP concentrations provide adequate constraints for a unique minimal kinetic model that can fit all the data and satisfy extensive sensitivity tests. Significantly, the fits show that the ratio of the rates of ATP hydrolysis and synthesis is close to unity even in the steady-state mode of hydrolysis. Furthermore, the rate of Pi binding in the absence of the membranous F(O) sector is insignificant; thus, productive Pi binding does not occur without the influence of a proton motive force. In addition to the minimal steps of ATP binding, reversible ATP hydrolysis/synthesis, and the release of product Pi and ADP, one additional rate-limiting step is required to fit the burst kinetics. On the basis of the testing of all possible minimal kinetic models, this step must follow hydrolysis and precede Pi release in order to explain burst kinetics. Consistent with the single molecule analysis of Yasuda et al. (Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., and Itoh, H. (2001) Nature 410, 898-904), we propose that the rate-limiting step involves a partial rotation of the gamma subunit; hence, we name this step k(gamma). Moreover, the only model that is consistent with our data and many other observations in the literature suggests that reversible hydrolysis/synthesis can only occur in the active site of the beta(TP) conformer (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628).  相似文献   

10.
Le NP  Omote H  Wada Y  Al-Shawi MK  Nakamoto RK  Futai M 《Biochemistry》2000,39(10):2778-2783
The three catalytic sites of the F(O)F(1) ATP synthase interact through a cooperative mechanism that is required for the promotion of catalysis. Replacement of the conserved alpha subunit Arg-376 in the Escherichia coli F(1) catalytic site with Ala or Lys resulted in turnover rates of ATP hydrolysis that were 2 x 10(3)-fold lower than that of the wild type. Mutant enzymes catalyzed hydrolysis at a single site with kinetics similar to that of the wild type; however, addition of excess ATP did not chase bound ATP, ADP, or Pi from the catalytic site, indicating that binding of ATP to the second and third sites failed to promote release of products from the first site. Direct monitoring of nucleotide binding in the alphaR376A and alphaR376K mutant F(1) by a tryptophan in place of betaTyr-331 (Weber et al. (1993) J. Biol. Chem. 268, 20126-20133) showed that the catalytic sites of the mutant enzymes, like the wild type, have different affinities and therefore, are structurally asymmetric. These results indicate that alphaArg-376, which is close to the beta- or gamma-phosphate group of bound ADP or ATP, respectively, does not make a significant contribution to the catalytic reaction, but coordination of the arginine to nucleotide filling the low-affinity sites is essential for promotion of rotational catalysis to steady-state turnover.  相似文献   

11.
Rate of ATP synthesis by dynein   总被引:1,自引:0,他引:1  
The rates of ATP synthesis and release by the dynein ATPase were determined in order to estimate thermodynamic parameters according to the pathway: (Formula: see text). Dynein was incubated with high concentrations of ADP and Pi to drive the net synthesis of ATP, and the rate of ATP production was monitored fluorometrically by production of NADPH through a coupled assay using hexokinase and glucose-6-phosphate dehydrogenase. The turnover number for the rate of release of ATP from 22S dynein was 0.01 s-1 per site at pH 7.0, 28 degrees C, assuming a molecular weight of 750 000 per site. The same method gave a rate of ATP synthesis by myosin subfragment 1 of 3.4 X 10(-4) s-1 at pH 7.0, 28 degrees C. The rate of ATP synthesis at the active site was estimated from the time dependence of medium phosphate-water oxygen exchange. Dynein was incubated with ADP and [18O] Pi, and the rate of loss of the labeled oxygen to water was monitored by 31P NMR. A partition coefficient of 0.31 was determined, which is equal to k-2/(k-2 + k3). Assuming k3 = 8 s-1 [Johnson, K.A. (1983) J. Biol. Chem. 258, 13825-13832], k-2 = 3.5 s-1. From the rates of ATP binding and hydrolysis measured previously (Johnson, 1983), the equilibrium constants for ATP binding and hydrolysis could be calculated: K1 = 5 X 10(7) M-1 and K2 = 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
The kinetic properties of type-II ATP diphosphohydrolase are described in this work. The enzyme preparation from the inner layer of the bovine aorta, mostly composed of smooth muscle cells, shows an optimum at pH 7.5. It catalyzes the hydrolysis of tri- and diphosphonucleosides and it requires either Ca2+ or Mg2+ for activity. It is insensitive to ouabain (3 mM), an inhibitor of Na+/K(+)-ATPase, to tetramisole (5 mM), an inhibitor of alkaline phosphatase, and to Ap5A (100 microM), an inhibitor of adenylate kinase. In contrast, sodium azide (10 mM), a known inhibitor for ATPDases and mitochondrial ATPase, is an effective inhibitor. Mercuric chloride (10 microM) and 5'-p-fluorosulfonylbenzoyl adenosine are also powerful inhibitors, both with ATP and ADP as substrates. The inhibition patterns are similar for ATP and DP, thereby, supporting the concept of a common catalytic site for these substrates. Apparent Km and Vmax, obtained with ATP as the substrate, were evaluated at 23 +/- 3 microM and 1.09 mumol Pi/min per mg protein, respectively. The kinetic properties of this enzyme and its localization as an ectoenzyme on bovine aorta smooth muscle cells suggest that it may play a major role in regulating the relative concentrations of extracellular nucleotides in blood vessels.  相似文献   

14.
The rate of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 was measured as a function of the ATP concentration in the presence of inhibitors [ADP, Pi and 3'-O-(1-naphthoyl)ATP]. ATP hydrolysis can be described by Michaelis-Menten kinetics with Km(TF1) = 390 microM and Km (TF0F1) = 180 microM. The inhibition constants are for ADP Ki(TF1) = 20 microM and Ki(TF0F1) = 100 microM, for 3'-O-(1-naphthoyl)ATP Ki(TF1) = 150 microM and Ki(TF0F1) = 3 microM, and for Pi Ki(TF1) = 60 mM. From these results it is concluded that upon binding of TF0 to TF1 the mechanism of ATP hydrolysis catalyzed by TF1 is not changed qualitatively; however, the kinetic constants differ quantitatively.  相似文献   

15.
Ahmad Z  Senior AE 《FEBS letters》2005,579(2):523-528
alphaArg-376, betaLys-155, and betaArg-182 are catalytically important ATP synthase residues that were proposed to be involved in substrate Pi binding and subsequent steps of ATP synthesis [Senior, A.E., Nadanaciva, S. and Weber, J. (2002) Biochim. Biophys. Acta 1553, 188-211]. Here, it was shown using purified Escherichia coli F(1)-ATPase that whereas Pi protected wild-type from reaction with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, mutations betaK155Q, betaR182Q, betaR182K, and alphaR376Q abolished protection. Therefore, in ATP synthesis initial binding of substrate Pi in open catalytic site betaE is supported by each of these three residues.  相似文献   

16.
1. Reduction in the magnitude of the respiration-dependent protonmotive force (proton electrochemical gradient in mV) of vesicles from Paracoccus denitrificans, and of submitochondrial particles, has been found to be paralleled small increases in S50% values for both ADP and Pi. For example, reduction of the protonmotive force of P. denitrificans vesicles from 145 mV to 110 mV was accompanied by an increase of S50% (ADP) from 8 microM to 18 microM, and an increase of S50% (Pi) from 0.33 mM to 1.4 mM. This result was obtained with partial uncoupling quantities of both carbonyl-cyanide p-trifluoromethoxyphenylhydrazone and of the synergistic combination of nigericin plus valinomycin in the presence of K+. In view of the similar effects of these two different methods of uncoupling it is concluded that the changes in S50% were a consequence of the diminished protonmotive force acting on the ATP synthase rather than of a secondary, direct interaction of the uncouplers with the enzyme. Changes in S50% rather than Km are described because under several sets of conditions double-reciprocal plots were nonlinear. 2. For equivalent attenuations in the rate of ATP synthesis by submitochondrial particles, 2,4-dinitrophenol caused much larger increases in S50% (ATP) than did carbonylcyanide p-trifluoromethoxyphenylhydrazone. Therefore it is concluded that the effect of 2,4-dinitrophenol was primarily a consequence of its previously recognized direct interaction with the F1 segment of the mitochondrial ATPase. The concentration range of 2,4-dinitrophenol that raised S50% (ADP) is similar to that which weakens the binding of ADP to a particular type of site on the purified F1 sector of ATP synthase. This correlation is consistent with such a site having a catalytic role during ATP synthesis. 3. A titration of the rate of ATP synthesis by vesicles of P. denitrificans with increasing quantities of carbonylcyanide p-trifluoromethoxyphenylhydrazone showed that the initial titres of the uncoupler caused large decreases in the rate of ATP synthesis for relatively small attenuations in the protonmotive force. Thus the initial 20 mV drop in the protonmotive force was accompanied by a reduction of more than 65% in the rate of ATP synthesis. Over the lowest range of values of protonmotive force that drove detectable rates of ATP synthesis however, the dependence of the rate was a less steep function of the protonmotive force. A plot of the logarithm of the rate of ATP synthesis against protonmotive force reveals a biphasic relationship. There does not appear to be a 'threshold' value of the protonmotive force below which ATP synthesis is blocked by kinetic factors. 4. The relationships of the protonmotive force with S50% values and with the rate of ATP synthesis (at near saturating concentrations of ADP and Pi) are discussed in relation to possible mechanisms for the coupling of proton translocation to ATP synthesis.  相似文献   

17.
(1) Dimethyl sulfoxide (DMSO) markedly inhibited the Vmax of multisite ATPase activity in Escherichia coli F1-ATPase at concentrations greater than 30% (v/v). Vmax/KM was reduced by 2 orders of magnitude in 40% (v/v) DMSO at pH 7.5, primarily due to reduction of Vmax. The inhibition was rapidly reversed on dilution into aqueous buffer. (2) KdATP at the first, high-affinity catalytic site was increased 1500-fold from 2.3 x 10(-10) to 3.4 x 10(-7) M in 40% DMSO at pH 7.5, whereas KdADP was increased 3.2-fold from 8.8 to 28 microM. This suggests that the high-affinity catalytic site presents a hydrophobic environment for ATP binding in native enzyme, that there is a significant difference between the conformation for ADP binding as opposed to ATP binding, and that the ADP-binding conformation is more hydrophilic. (3) Rate constants for hydrolysis and resynthesis of bound ATP in unisite catalysis were slowed approximately 10-fold by 40% DMSO; however, the equilibrium between bound Pi/bound ATP was little changed. The reduction in catalysis rates may well be related to the large increase in KdATP (less constrained site). (4) Significant Pi binding to E. coli F1 could not be detected either in 40% DMSO or in aqueous buffer using a centrifuge column procedure. (5) We infer, on the basis of the measured constants KaATP, K2 (hydrolysis/resynthesis of ATP), k+3 (Pi release), and KdADP and from estimates of k-3 (Pi binding) that delta G for ATP hydrolysis in 40% DMSO-containing pH 7.5 buffer is between -9.2 and -16.8 kJ/mol.  相似文献   

18.
Burgos ES  Schramm VL 《Biochemistry》2008,47(42):11086-11096
Human nicotinamide phosphoribosyltransferase (NAMPT, EC 2.4.2.12) catalyzes the reversible synthesis of nicotinamide mononucleotide (NMN) and inorganic pyrophosphate (PP i) from nicotinamide (NAM) and alpha- d-5-phosphoribosyl-1-pyrophosphate (PRPP). NAMPT, by capturing the energy provided by its facultative ATPase activity, allows the production of NMN at product:substrate ratios thermodynamically forbidden in the absence of ATP. With ATP hydrolysis coupled to NMN synthesis, the catalytic efficiency of the system is improved 1100-fold, substrate affinity dramatically increases ( K m (NAM) from 855 to 5 nM), and the K eq shifts -2.1 kcal/mol toward NMN formation. ADP-ATP isotopic exchange experiments support the formation of a high-energy phosphorylated intermediate (phospho-H247) as the mechanism for altered catalytic efficiency during ATP hydrolysis. NAMPT captures only a small portion of the energy generated by ATP hydrolysis to shift the dynamic chemical equilibrium. Although the weak energetic coupling of ATP hydrolysis appears to be a nonoptimized enzymatic function, closer analysis of this remarkable protein reveals an enzyme designed to capture NAM with high efficiency at the expense of ATP hydrolysis. NMN is a rate-limiting precursor for recycling to the essential regulatory cofactor, nicotinamide adenine dinucleotide (NAD (+)). NMN synthesis by NAMPT is powerfully inhibited by both NAD (+) ( K i = 0.14 muM) and NADH ( K i = 0.22 muM), an apparent regulatory feedback mechanism.  相似文献   

19.
In ATP synthase, X-ray structures, demonstration of ATP-driven gamma-subunit rotation, and tryptophan fluorescence techniques to determine catalytic site occupancy and nucleotide binding affinities have resulted in pronounced progress in understanding ATP hydrolysis, for which a mechanism is presented here. In contrast, ATP synthesis remains enigmatic. The molecular mechanism by which ADP is bound in presence of a high ATP/ADP concentration ratio is a fundamental unknown; similarly P(i) binding is not understood. Techniques to measure catalytic site occupancy and ligand binding affinity changes during net ATP synthesis are much needed. Relation of these parameters to gamma-rotation is a further goal. A speculative model for ATP synthesis is offered.  相似文献   

20.
Mitochondrial Fo.F1-H+-ATP synthase is the main enzyme responsible for the formation of ATP in aerobic cells. An alternating binding change mechanism is now generally accepted for the operation of the enzyme. This mechanism apparently leaves no room for the participation of nucleotides and Pi other than sequential binding to (release from) the catalytic sites. However, the kinetics of ATP hydrolysis by mitochondrial ATPase is very complex, and it is difficult to explain it in terms of the alternating binding change mechanism only. Fo.F1 catalyzes both delta muH+-dependent ATP synthesis and ATP-dependent delta muH+ generation. It is generally believed that this enzyme operates as the smallest molecular electromechanochemical reversible machine. This essay summarizes data which contradict this simple reversible mechanism and discusses a hypothesis in which different pathways are followed for ATP hydrolysis and ATP synthesis. A model for a reversible switch mechanism between ATP hydrolase and ATP synthase states of Fo. F1 is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号