首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulatory peptides in fruit fly midgut   总被引:1,自引:0,他引:1  
Regulatory peptides were immunolocalized in the midgut of the fruit fly Drosophila melanogaster. Endocrine cells were found to produce six different peptides: allatostatins A, B and C, neuropeptide F, diuretic hormone 31, and the tachykinins. Small neuropeptide-F (sNPF) was found in neurons in the hypocerebral ganglion innervating the anterior midgut, whereas pigment-dispersing factor was found in nerves on the most posterior part of the posterior midgut. Neuropeptide-F (NPF)-producing endocrine cells were located in the anterior and middle midgut and in the very first part of the posterior midgut. All NPF endocrine cells also produced tachykinins. Endocrine cells containing diuretic hormone 31 were found in the caudal half of the posterior midgut; these cells also produced tachykinins. Other endocrine cells produced exclusively tachykinins in the anterior and posterior extemities of the midgut. Allatostatin-immunoreactive endocrine cells were present throughout the midgut. Those in the caudal half of the posterior midgut produced allatostatins A, whereas those in the anterior, middle, and first half of the posterior midgut produced allatostatin C. In the middle of the posterior midgut, some endocrine cells produced both allatostatins A and C. Allatostatin-C-immunoreactive endocrine cells were particularly prominent in the first half of the posterior midgut. Allatostatin B/MIP-immunoreactive cells were not consistently found and, when present, were only weakly immunoreactive, forming a subgroup of the allatostatin-C-immunoreactive cells in the posterior midgut. Previous work on Drosophila and other insect species suggested that (FM)RFamide-immunoreactive endocrine cells in the insect midgut could produce NPF, sNPF, myosuppressin, and/or sulfakinins. Using a combination of specific antisera to these peptides and transgenic fly models, we showed that the endocrine cells in the adult Drosophila midgut produced exclusively NPF. Although the Drosophila insulin gene Ilp3 was abundantly expressed in the midgut, Ilp3 was not expressed in endocrine cells, but in midgut muscle.  相似文献   

2.
3.
The cerebral nervous and midgut endocrine systems of the larval corn earworm, Helicoverpa zea, were examined using light microscopy and immunocytochemistry for RF-amide family peptides. Immunoreactivity for a mosquito neuropeptide, Aedes Head Peptide-I (Aea-HP-I,pERPhPSLKTRFa), is widely distributed in this lepidopteran. Immunostaining for Aea-HP-I is localized (1a) in perikarya and axons of the brain, the subesophageal ganglion, and the first thoracic ganglion, (b) in peripheral axons innervating muscles of the midgut, and (2) in numerous midgut endocrine cells. Aea-HP-I-associated activity generally occurs as a subset of FMRF-amide (FMRFa; a molluscan cardioactive peptide) immunoreactivity. Cross-reactivity studies indicate that Aea-HP-I and FMRFa immunoreactivities are heterogeneous in the cerebral nervous system and in axons innervating the muscles of the midgut, but may be homogeneous in midgut endocrine cells. Radioimmunoassay for Aea-HP-I reveals immunoreactivity in hemolymph, as well as in extracts of midguts and heads.  相似文献   

4.
5.
The triple co-localisation of peptidergic material immunoreactive to antisera raised against allatostatins of the Y/FXFGL-NH2 type, Manduca sexta allatostatin (Mas-AS), and allatotropin has been demonstrated in a single pair of anterodorsal neurones in the frontal ganglion of the tomato moth, Lacanobia oleracea (Noctuidae). Another pair of posterior neurones contain only Y/FXFGL-NH2-type allatostatin immunoreactivity. The neurites of all four cells trifurcate, and axons project to the brain in the frontal connectives and to the foregut in the recurrent nerve. Axons from the anterior neurones, within the recurrent nerve, have prominent lateral branches supplying muscles of the crop, and axons from both anterior and posterior cells show profuse branching and terminal arborisations in the region of the stomodeal valve. The brain contributes Y/FXFGL-NH2-immunoreactive material, but not allatotropin or Mas-AS, to the recurrent nerve via NCC 1+2 and NCC 3. All three peptides have a reversible effect on the spontaneous (peristaltic) contractions of the foregut (crop) in vitro. Thus, both types of allatostatin are inhibitory at 10(-12) to 10(-7) M, whereas allatotropin is strongly myostimulatory at 10(-14) M. This is the first demonstration of the gut myoinhibitory effects of Mas-AS and, taken together with the effects of Y/FXFGL-NH2-type allatostatins and allatotropin, reveals a different functional aspect to that normally attributed to these three peptides, i.e. control of juvenile hormone synthesis by the corpus allatum.  相似文献   

6.
Immunoreactivity against peptides of the allatostatin family having a typical YXFGL-NH2 C-terminus has been localized in different areas of the central nervous system, stomatogastric nervous system and gut of the cockroach Blattella germanica. In the protocerebrum, the most characteristic immunoreactive perikarya are situated in the lateral and median neurosecretory cell groups. Immunoreactive median neurosecretory cells send their axons around the circumesophageal connectives to form arborizations in the anterior neuropil of the tritocerebrum. A group of cells in the lateral aspect of the tritocerebrum project to the antennal lobes in the deutocerebrum, where immunoreactive arborizations can be seen in the periphery of individual glomeruli. Nerve terminals were shown in the corpora allata. These terminals come from perikarya situated in the lateral neurosecretory cells in the pars lateralis and in the subesophageal ganglion. Immunoreactive axons from median neurosecretory cells and from cells positioned in the anteriormost part of the tritocerebrum enter together in the stomatogastric nervous system and innervate foregut and midgut, especially the crop and the valve between the crop and the midgut. The hindgut is innervated by neurons whose perikarya are located in the last abdominal ganglion. Besides immunoreactivity in neurons, allatostatin-immunoreactive material is present in endocrine cells distributed within the whole midgut epithelium. Possible functions for these peptides according to their localization are discussed. Arch. Insect Biochem. Physiol. 37:269–282, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Pabla N  Lange AB 《Peptides》1999,20(10):1159-1167
The midgut of the African migratory locust, Locusta migratoria, was found to contain endocrine-like cells that stained positively for locustatachykinin I (Lom TK I)-like immunoreactivity. These cells were distributed in an unequal manner throughout the midgut of the locust, with a greater density of Lom TK I-like immunoreactive endocrine-like cells occurring in the posterior region of the midgut. These singly occurring cells appear elongate with an apical extension projecting toward the midgut lumen and a smaller projection extending towards the midgut basal lamina. No immunoreactive neuronal processes were detected along the midgut wall. Radioimmunoassays revealed that the female midgut contained two to three times more Lom TK I-like material than the male midgut, and radioimmunoassay coupled to high-performance liquid chromatography analysis revealed that at least five locustatachykinin isoforms appear to be present in the midgut. This distribution of Lom TK I-like material suggests possible functional differences in the various regions of the midgut. The role that these cells may play in locust midgut secretory activity and motility remains unknown. However, the addition of synthetic Lom TK I through IV to a ring type midgut muscle preparation stimulated contraction of midgut circular muscles, suggesting a possible physiological role for these peptides. Dose-response curves constructed for Lom TK I-IV revealed that the peptide-induced contractions increased in a dose-dependent manner.  相似文献   

8.
Abstract. The innervation of the gut of the cockroach Leucophaea madera (F.) has been studied by means of wholemount immunocytochemistry with antisera raised against Leu-callatostatin, a cockroach allatostatin homologue identified from neuropeptide isolation and gene studies in the blowfly Calliphora vomitoria. Leu-callatostatin-imunoreactive neurones in the brain, with axon trajectories in the stomatogastric nervous system, innervate the foregut and midgut. Neurones in the last abdominal ganglion supply the hindgut and the midgut via the proctodeal nerve. In addition to a rich callatostatin-immunoreactive nerve supply, the midgut, including the midgut caeca, contain numerous callatostatin-immunoreactive endocrine cells. Physiological studies show that the spontaneous contractile activities of the foregut, but not the hindgut, are inhibited by callatostatin neuropeptides. Leu-callatostatin 3 was the most potent of the range of Leu-and Met-callatostatins tested, with a dose-dependent response between 10-13 and 10-7 M. This is similar to the results obtained with the previously identified myoinhibitory peptide of L. maderae , leucomyosuppressin. However, this peptide, with a different type of structure to the allatostatins, inhibits both foregut and hindgut motility equally. Experiments with a series of analogues of the Met-callatostatins showed that the free acid (as opposed to the carboxyamidated peptide) and N-terminally truncated peptides were inactive. These morphological and physiological results are thought to be representative of the, as yet unidentified, naturally occurring allatostatin homologues of L. maderae. This family of peptides should be added to the increasing list of insect gut myoinhibitory substances.  相似文献   

9.
Summary The caudal spinal cord of the coho salmon was investigated by means of immunocytochemistry using antisera against serotonin, urotensin I, urotensin II, somatostatin and a urea-extract of bovine Reissner's fiber (AFRU). Populations of serotonin-immunoreactive (IR) neurons were found rostral and dorsal to the urophysis in close spatial association with caudal secretory neurons. Thick, smooth serotonin-IR processes extended toward the external surface of the spinal cord where they displayed conspicuous terminal dilatations. Thin, beaded serotonin-IR fibers appeared to innervate populations of caudal secretory and somatostatin-IR cerebrospinal fluid-contacting neurons. Most caudal neurosecretory cells displayed both urotensin I and urotensin II immunoreactivities; only a minority reacted exclusively with either urotensin I or urotensin II antisera. Urotensin II-IR and somatostatin-IR cerebrospinal fluid (CSF)-contacting neurons were found as an integral component of the central canal wall in the caudal spinal cord and filum terminale; their dendritic processes appeared to contact Reissner's fiber, which displayed a weak AFRU-immunoreactivity while inside the central canal, but became strongly reactive in the interior of the terminal ventricle as it formed the massa caudalis. The distribution of serotoninergic processes points to a regulatory role in the function of caudal secretory and CSF-contacting neurons and to a putative serotonin release into the subarachnoid space and/or meningeal vasculature. It is also suggested that the CSF-contacting neurons of the central canal may participate in a feedback mechanism controlling the secretory activity of the subcommissural organ.Supported by Grant A/1095-1 from the International Foundation for Science, Sweden, to C.Y.; Grant I/63-476 from Volkswagen-Stiftung to E.R.; and Grant S-85-39 from the Dirección de Investigaciones, Universidad Austral de Chile  相似文献   

10.
Malaria ookinetes invade midgut epithelial cells of the mosquito vector from the bloodmeal in the lumen of the mosquito midgut, but the cellular interactions of ookinetes with the mosquito vector remain poorly described. We describe here a novel morphology of Plasmodium gallinaceum ookinetes in which the central portion of the ookinete is an elongated narrow tube or stalk joining the anterior and posterior portions of the parasite. We propose that the previously undescribed stalkform ookinete may be an adaptation to facilitate parasite locomotion through the cytoplasm of mosquito midgut epithelial cells.  相似文献   

11.
Peptidyl-glycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is an enzyme that catalyzes conversion of glycine-extended peptides to alpha-amidated bioactive peptides. Two peptides that are processed at their carboxyl-termini by this enzyme are neuropeptide Y and anglerfish peptide Y, both of which possess a C-terminal glycine that is used as a substrate for amidation. Results from previous reports have demonstrated that neuropeptide Y-like and anglerfish peptide Y-like immunoreactivities are present in the brain of anglerfish (Lophius americanus). Furthermore, neuropeptide Y-like peptides, namely anglerfish peptide Y and anglerfish peptide YG (the homologues of pancreatic polypeptide) are present in the islet organ of this species. Neuropeptide Y has also been localized in the anterior, intermediated and posterior lobes of the pituitary gland in a variety of species. In order to learn more about the distribution of the enzyme responsible for alpha amidation of these peptides in the brain and pituitary and to specifically investigate the relationship of this enzyme to peptide synthesizing endocrine cells of the anglerfish islet, we performed an immunohistochemical study using several antisera generated against different peptide sequences of the enzyme. PAM antisera labeled cells in the islet organ, pituitary and brain, and fibers in the brain and pituitary gland. The PAM staining pattern in the brain was remarkably similar to the distribution of neuropeptide Y immunoreactivity reported previously. Clusters of cells adjacent to vessels in the anterior pituitary displayed punctate PAM immunoreactivity while varicose fibers were observed in the pituitary stalk and neurohypophysis. Endocrine cells of the islet organ were differentially labeled with different PAM antisera. Comparison of the staining patterns of insulin, glucagon, and anglerfish peptide Y in the islet organ to PAM immunoreactivity suggests a distribution of forms of PAM enzyme in insulin and anglerfish peptide Y-containing cells, but no overlap with glucagon-producing cells. The results also indicate that PAM immunoreactivity is widely distributed in the brain, pituitary and islet organ of anglerfish in cells that contain peptides that require presence of a C-terminal glycine for amidation.  相似文献   

12.
Gene expression and immunolocalisation studies have determined that the helicostatins are brain-gut peptides in larvae of the lepidopteran, Helicoverpa armigera. Mapping of the distribution of these peptides in the nervous system and alimentary canal has provided evidence for multifunctional regulatory roles. In situ hybridisation studies have shown that the helicostatin precursor gene is expressed in neurones of the central and stomatogastric nervous systems, and endocrine cells of the midgut demonstrating that the helicostatins are true brain-gut peptides. Antisera raised against Leu-callatostatin 3 (ANRYGFGL-NH(2)), a peptide isolated from the blowfly, Calliphora vomitoria was used to map the distribution of allatostatin-like immunoreactive (Ast-ir) material in H. armigera to elucidate possible functions of the helicostatins. In situ hybridisation studies verified that the helicostatin precursor gene is expressed in neurones shown to contain Ast-ir, providing strong evidence that the Ast-ir material is helicostatins. Extensive immunoreactive axonal projections into complex regions of neuropile indicate that the helicostatins may have a neuromodulatory role in the brain and segmental ganglia of the ventral nerve cord. The presence of large amounts of immunoreactive material in axons within the corpora cardiaca (CC) and transverse nerves of the perisympathetic nervous system, two known neurohaemal organs, provides evidence for a neurohormonal role. The corpora allata (CA) were innervated only sparsely by Ast-ir axons suggesting that the CA are not a neurohaemal release site or a target. Thus, it is unlikely that the helicostatins regulate juvenile hormone (JH) biosynthesis or release. Ast-ir axons extended from the frontal ganglion through the recurrent nerve and many branches were closely associated with muscles of the foregut, stomodeal valve, and anterior midgut, implicating helicostatins in regulation of foregut motility. Ast-ir material was also present in nerves associated with muscles of the pyloric valve and rectum, and in endocrine cells of the midgut.  相似文献   

13.
Lange AB 《Peptides》2001,22(2):229-234
The midgut of 5th instar male African migratory locust, Locusta migratoria, was found to contain endocrine-like cells that stained positively for FMRFamide-like immunoreactivity. These cells have cell bodies which are tear-drop in shape with processes extending from the cell body. FMRFamide-like immunoreactivity has been described in similar cells in adult midgut tissue [16]. The midgut tissue content of FMRFamide-like immunoreactivity is differentially distributed throughout various regions of the midgut (gastric cecae, anterior and posterior midgut) in 5th instar and varied ages of adult. FMRFamide-like immunoreactivity in midgut tissues decreases significantly by 24 h of starvation, whereas locustatachykinin I-like immunoreactivity does not decrease until 48 h of starvation indicating that there are differential timing effects of these two peptide families on midgut content. HPLC analysis, combined with RIA, of different regions of the midgut tissue from both fed and starved locusts revealed that the relative proportions of the members of the two peptide families vary depending upon the feeding state. These results indicate that the contents of these endocrine-like cells appears to be differentially influenced by the feeding state of the locust.  相似文献   

14.
Johard HA  Coast GM  Mordue W  Nässel DR 《Peptides》2003,24(10):1571-1579
In insects primary urine is produced by the Malpighian tubules under hormonal control. Here we have analysed the effects of the peptide locustatachykinin I (Lom-TK-I) on secretion in isolated Malphigian tubules. We also mapped the distribution of Lom-TK immunoreactivity in the gut in comparison with Locusta diuretic hormone (Lom-DH) and serotonin, two other factors that are active on locust tubules. Lom-TK-I produces an immediate, potent and long-lasting stimulation of fluid secretion. Furthermore, we show that Lom-TK-I acts synergistically with Lom-DH on fluid secretion and demonstrate that Lom-TKs are co-localised with Lom-DH in endocrine cells of the midgut ampullae. Thus, the two peptides might be released together to act synergistically on fluid secretion. Also serotonin and Lom-DH act synergistically and we can demonstrate a plexus of serotonin-containing axon processes over the midgut.  相似文献   

15.
Summary The ontogeny of the endocrine cells of the gut of the cockroach Periplaneta americana was studied by immunohistochemistry. During embryogenesis, the midgut begins to be formed as an outgrowth of the foregut and hindgut invaginations. Gut endocrine cells with pancreatic polypeptide (PP)-like immunoreactivity begin to appear at the anterior and posterior ends of the forming midgut. These cells are restricted to the midgut epithelium, and no mitotic cells with PP-like immunoreactivity are observed. These results strongly suggest that the gut endocrine cells, at least those with PP-like immunoreactivity, are derived from precursor cells they have in common with other epithelial cells of the midgut.  相似文献   

16.
The caudal neurosecretory system is described here for the first time in the zebrafish, one of the most important models used to study biological processes. Light- and electron-microscopical approaches have been employed to describe the structural organization of Dahlgren cells and the urophysis, together with the immunohistochemical localization of urotensin I and II (UI and UII) peptides. Two latero-ventral bands of neuronal perikarya in the caudal spinal cord project axons to the urophysis. The largest secretory neurons (~20 μm) are located rostrally. UII-immunoreactive perikarya are much more numerous than those immunoreactive for UI. A few neurons are immunopositive for both peptides. Axons contain 75-nm to 180-nm dense-core vesicles comprising two populations distributed in two axonal types (A and B). Large dense vesicles predominate in type A axons and smaller ones in type B. Immunogold double-labelling has revealed that some fibres contain both UI and UII, sometimes even within the same neurosecretory granule. UII is apparently the major peptide present and predominates in type A axons, with UI predominating in type B. A surprising finding, not previously reported in other fish, is the presence of dense-core vesicles, similar to those in neurons, in astrocytes including their end-feet around capillaries. Secretory type vesicles are also evident in ependymocytes and cerebrospinal-fluid-contacting neurons in the terminal spinal cord. Thus, in addition to the urophysis, this region may possess further secretory systems whose products and associated targets remain to be established. These results provide the basis for further experimental, genetic and developmental studies of the urophysial system in the zebrafish.  相似文献   

17.
Immunocytochemistry was used to investigate the presence of corticotropin-releasing factor-like peptides in the interrenal (adrenal) glands of the bullfrog Rana catesbeiana by using specific antisera raised against synthetic nonconjugated rat/human corticotropin-releasing factor, urotensin I, and sauvagine. From these three antisera, covering a broad range of corticotropin-releasing factor-like immunoreactivities, only the sauvagine antiserum gave positive immunoreactivity. Sauvagine immunoreactivity was found in cortical cells grouped into cords in the renal zone of the interrenal gland. The central and subcapsular cords were less stained. Tyrosine hydroxylase-positive chromaffin cells were not sauvagine-immunoreactive. The immunoreactivity was abolished, in all cases, by previous immunoabsorption of the sauvagine antiserum with synthetic sauvagine (0.1 7M), but it was not eliminated by sucker (Catostomus commersoni) urotensin I, sole (Hippoglossoides elassodon) urotensin I, sucker corticotropin-releasing factor, rat/human corticotropin-releasing factor, or ovine corticotropin-releasing factor (0.1-10 7M). In a sauvagine radioimmunoassay, interrenal extracts displaced 125I-sauvagine from antiserum only partially, and not in parallel with the sauvagine standard curve. The results suggest that the sauvagine immunoreactivity in the R. catesbeiana interrenal gland may represent a novel sauvagine-like peptide.  相似文献   

18.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

19.
The Leu-callatostatins are a series of four neuropeptides isolated from nervous tissues of the blowfly Calliphora vomitoria that show C-terminal sequence homology to the allatostatins of cockroaches. The allatostatins have an important role in the reproductive processes of insects as inhibitors of the synthesis and release of juvenile hormone from the corpus allatum. In this study, the distribution of the Leu-callatostatin-immunoreactive neurones and endocrine cells has been mapped in C. vomitoria and, in contrast to the cockroach allatostatins, it has been shown that there is no cytological basis to suggest that the dipteran peptides act as regulators of juvenile hormone. Although occurring in various neurones in the brain and thoracico-abdominal ganglion, there is no evidence of Leu-callatostatin-immunoreactive pathways linking the brain to the corpus allatum, or of immunoreactive terminals in this gland. Three different types of functions for the Leu-callatostatins are suggested by the occurrence of immunoreactive material in cells and by the pathways that have been identified. (1) A role in neurotransmission or neuromodulation appears evident from immunoreactive neurones in the medulla of the optic lobes, and from immunoreactive material in the central body and in descending interneurones in the suboesophageal ganglion that project to the neuropile of the thoracico-abdominal ganglion. (2) Leu-callatostatin neurones directly innervate muscles of the hindgut and the heart. Immunoreactive fibres from neurones of the abdominal ganglion pass by way of the median abdominal nerve to ramify extensively over several areas of the hindgut. Physiological experiments with synthetic peptides show that the Leu-callatostatins are potent inhibitors of peristaltic movements of the ileum. Leu-callatostatin 3 is active at 10-16 to 10-13 M. This form or regulatory control over gut motility appears to be highly specific since the patterns of contraction in other regions are unaffected by these peptides. (3) Evidence that the Leu-callatostatins act as neurohormones comes from the presence of varicosities in axons passing through the corpus cardiacum (but not the corpus allatum) and also from material in extraganglionic neurosecretory cells in the thorax. Fibres from these peripheral neurones are especially prominent over the large nerve bundles supplying the legs. There are also a considerable number of Leu-callatostatin-immunoreactive endocrine cells in a specific region of the midgut. The conclusion from this study is that although conservation of the structure of the allatostatin-type of peptides is evident through a long period of evolution it cannot be assumed that all of their functions have also been conserved. Several different types of functions for the Leu-callatostatins of the blowfly are proposed in this study, but there is no evidence to suggest a role in the regulation of juvenile hormone synthesis and release.  相似文献   

20.
Bumblebees are widely distributed across the world and have great economic and ecological importance as pollinators in the forest as well as in agriculture. The insect midgut consists of three cell types, which play various important roles in digestion, absorption, and hormone production. The present study characterized the anterior and posterior midgut regions of the bumblebee, Bombus morio. The digestive, regenerative and endocrine cells in the midgut showed regional differences in their number, nuclear size, as well as the size of the striated border. Ultrastructurally, the digestive cells contained many mitochondria and long microvilli; however, in the anterior midgut region, these cells showed dilated basal labyrinths with a few openings for the hemocoel, whereas the labyrinths of the basal posterior region remained inverse characteristics. Thus, the characterization of the midgut of B. morio supported an ecto-endoperitrophic circulation, contributing to a better understanding of the digestive process in this bee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号