首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eurosta solidaginis Fitch (Diptera: Tephritidae) has formed host races on Solidago altissima L. and Solidago gigantea Ait. (Asteraceae), and reproductive isolation between these host races is brought about in part by host‐associated assortative mating. Any non‐assortative mating creates the potential for gene flow between the populations, and we investigated the conditions that favored non‐assortative mating. We hypothesized that the frequency of non‐assortative mating would be influenced by differences in the behaviors of the host races and sexes and by the presence and pattern of distribution of the two host species. To test these hypotheses, we caged flies on four combinations of 32 potted host plants: all S. altissima, all S. gigantea, and cages with both host species arranged in either two pure species blocks or randomly dispersed. We recorded the number of flies of each host race that alighted on each host species and the frequency of mating within and between the host races. Males of both host races were observed on plants more frequently than females. Flies of the host race from S. gigantea (gig flies) were observed on plants in greater absolute numbers, and they mated more frequently than flies of the host race from S. altissima (alt flies). In all treatments, gig flies of both sexes were found on non‐natal host plants significantly more frequently than alt flies, and gig females showed a weaker preference for their host species than did gig males or alt flies of either gender for their respective natal hosts. Assortative mating predominated in all treatments, and flies from each host race mated more frequently in cages containing their own host plant. The frequency of non‐assortative mating varied among treatments, with the matings between alt ♀ × gig ♂ being more common in the pure S. altissima treatment and the gig ♀ × alt ♂ being more frequent in the pure S. gigantea and random treatments. Matings between gig ♂ × alt ♀ were more common overall than the reciprocal mating, because gig males were more active in pursuing matings and in alighting on the non‐natal host plant than alt flies. Non‐assortative matings were more frequent in the random than in the block treatments, but this difference was not significant. Because of strong selection against oviposition into the alternate host, we hypothesized that host plant distribution would not affect oviposition preference. We tested this hypothesis by examining the oviposition behavior of naïve, mated females in two treatments in which both host species were present: either arranged in blocks or randomly dispersed. Females oviposited only into their natal host, regardless of host plant distribution.  相似文献   

2.
Abstract 1 Egg loads from field collected pollen beetles (Meligethes aeneus Fab., Coleoptera: Nitidulidae) were determined by dissecting beetles caught at the beginning and end of the putative daily oviposition period. Field collected beetles were offered Brassica napus (L.) plants in cages for 8 (morning and early afternoon), 16 (overnight), and 24 h to ascertain the number of eggs laid during these time periods. 2 Most eggs were laid in the morning and early afternoon. The proportion of gravid females was higher at the beginning of the oviposition period than at the end. Most females in the morning carried two eggs, whereas one egg was more common in the afternoon. 3 We hypothesized that the number of eggs laid during the oviposition period would be equivalent to the difference between egg loads at the beginning and end of oviposition. This was not the case; differences in egg loads were significantly lower than number of eggs laid. However, the number of eggs laid was equivalent to the egg load at the beginning of the oviposition period, suggesting that eggs available in the morning are laid during the following day. 4 Population estimates of daily oviposition rates, approximately 0.7 eggs per beetle and day, were close to estimates from laboratory studies when the proportion of gravid females was taken into consideration.  相似文献   

3.
1 Laboratory-reared normal, and wild female Mediterranean fruit flies, Ceratitis capitata (Wiedemann), were assayed in outdoor field cages to assess the impact of a mating-induced behavioural switch on mating and subsequent oviposition activity. 2 Virgin females preferred interactions with males leading to mating over attraction to, and oviposition in, artificial yellow spheres containing guava odour or green apples hung in a guava tree. Laboratory-reared females previously mated with either laboratory-reared normal males or laboratory-reared irradiated (sterile) males showed little interest in remating with males and instead, were much more likely to be found arrested on artificial and real fruit and ovipositing. Oviposition on artificial fruit was five times greater by females that had mated with either normal or irradiated males than by virgin females. Wild females showed similar qualitative changes in the mating-induced behavioural switch; however, oviposition activity was significantly less than for laboratory-reared females. 3 These results confirm that mating has a profound effect on the behaviour of female Mediterranean fruit flies and that irradiated males are functionally equal with normal males (lab-reared or wild) in their ability to alter female behaviour. These results are discussed in the context of the sterile insect technique for control of Mediterranean fruit flies in the field.  相似文献   

4.
Foraging adults of phytophagous insects are attracted by host‐plant volatiles and supposedly repelled by volatiles from non‐host plants. In behavioural control of pest insects, chemicals derived from non‐host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non‐host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non‐host‐plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non‐host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non‐host‐plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host‐plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.  相似文献   

5.
Cover Caption     
《Insect Science》2015,22(5):ii-ii
Females of the common green blow fly, Lucilia sericata, ovipositing on rat carrion. When females oviposit in aggregations, even‐aged larval offspring develop faster and fewer are preyed upon. These benefits imply that females engage in coordinated, pheromone‐mediated oviposition behavior. Yet, new data show that oviposition site‐seeking females do not respond to pheromones but to semiochemicals associated with gravid or non‐gravid feeding flies, taking chances that resources are suitable for oviposition and that ovipositing flies are present (see pages 651–660). Image: Sean McCann.  相似文献   

6.
Divergent host preference (i.e. host fidelity) plays a significant role in the speciation process in phytophagous insects. However, how and to what extent this divergence reduces gene flow between populations has rarely been measured. Here, we estimated the intensity of assortative mating caused solely by host fidelity in two host races of the phytophagous ladybird beetle Henosepilachna diekei, specialized on Mikania micrantha (Asteraceae) and Leucas lavandulifolia (Lamiaceae) in West Java, Indonesia. These host races mated randomly in the absence of host plants under laboratory conditions, but demonstrated nearly complete assortative mating in field cages with the two host plants, by spending almost all of their time on their respective host plants. The frequency of assortative mating in the field cages was not affected drastically by host plant patch structure. These results suggest that fidelity to the different host plants yields directly almost complete reproductive isolation between the host races by limiting the habitat on the respective host plant. In addition, the high host fidelity also ensures female oviposition on the original host plant. As larvae cannot survive on non‐host plants, a positive association between female oviposition preference and larval performance on the host plant on which the beetles are specialized will further facilitate the evolution of host fidelity. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 606–614.  相似文献   

7.
Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.  相似文献   

8.
In insects, mating often occurs after natal dispersal, and hence relies on a coevolved combination of sexual communication and movement allowing mate encounter. Volatile sex pheromones are widespread, generally emitted by females and triggering in‐flight orientation of conspecific males. In parasitoid wasps, unmated females can start laying unfertilized eggs via parthenogenesis so that host patches could serve as sites of rendezvous for mating. Males could therefore use cues associated with host patches to focus their search on females that have successfully found oviposition sites. We hypothesized that in parasitoids exploiting herbivorous hosts, sex pheromones, and herbivore‐induced plant volatiles (HIPV) should act in synergy, triggering male orientation toward ovipositing females. We tested this hypothesis with the aphid parasitoid Lysiphlebus testaceipes. Results from both field and laboratory experiments show that males are strongly attracted to virgin females, but that volatiles from aphid‐infested plants have no effect on male orientation, neither has a cue, nor in interaction with the female sex pheromone. The absence of synergy between sex pheromones and HIPV contrasts with results on other species and raises interesting questions on mating systems and sexual selection in parasitoid wasps.  相似文献   

9.
Mature females of the tomato fruit fly Neoceratitis cyanescens can detect host fruit at a short distance using only visual stimuli, but little is known about the role of airborne volatile cues in the host searching strategy. A series of experiments is conducted in a laboratory wind tunnel, in which the behavioural responses of individual flies to volatiles from Solanaceae host plants (including tomato Lycopersicum esculentum Mill., bug weed Solanum mauritianum Scop. and Turkey berry Solanum torvum Sw.) are observed, according to some environmental (air speed) and physiological (age and mating status of females, time of day) factors. Mature females respond primarily to specific olfactory cues from blends of flowers or host fruit, preferentially unripe fruit for bug weed, as opposed to ripe fruit for Turkey berry or tomato. Males are also highly attracted by the odour of unripe fruit of bug weed. Wind plays a key role, as shown by the proportion of flies that reach the upwind section of the tunnel in the presence of both fruit odour and air flow (66.7%) and in the absence of either fruit odour (13.3%) or wind (36.7%). In response to fruit volatiles carried by wind, flies embark in a ‘plume tracking’ or ‘aim and shoot' flight, consistent with odour‐conditioned anemotaxis. Females respond to host fruit odour regardless of their age, egg load or mating status, and also more consistently in the afternoon, which is their preferential time of day for egg‐laying. Searching behaviour and response to host volatiles in N. cyanescens are discussed in the light of host‐finding and an adaptive strategy.  相似文献   

10.
We assessed the role of visual and olfactory cues on oviposition preference in the oligophagous tomato fruit fly, Neoceratitis cyanescens (Bezzi) (Diptera: Tephritidae). In a field survey, we evaluated the stage of susceptibility of field‐grown tomatoes by monitoring N. cyanescens infestations from fruit‐setting up to harvest, in relation to post‐flowering time, size, and visual properties of fruit. In two‐choice laboratory experiments, we tested the degree to which females use visual and olfactory cues to select their host plant for oviposition. In addition, we investigated the ability of flies to avoid fruit already infested by conspecific eggs or larvae, and the influence of natal host fruit on oviposition preference. Neoceratitis cyanescens females preferentially lay their eggs in small yellow‐green unripe fruit (2–3.5 cm diameter, 10–21 days post‐flowering). Damage to fruit was significantly affected by brightness and size properties. In laboratory experiments, females chose to lay their eggs in bright orange rather than yellow domes. On the sole basis of olfactory stimuli, females showed a significant preference for unripe vs. ripe host fruit, for unripe fruit vs. flowers or leaves, and for host vs. non‐host fruit (or control). However, colour interacted with odour as females dispatched their eggs equally between the yellow dome and the bright orange dome when unripe fruit of tomato was placed under the yellow dome vs. ripe fruit under the bright orange dome. When offered real ripe and unripe tomatoes, females preferred unripe tomatoes. Females significantly chose to lay eggs in non‐infested fruit when they were given the choice between these or fruit infested with larvae. In contrast, recent stings containing eggs did not deter females from laying eggs. Rather, they could have an attractive effect when deposited within <1 h. Regardless of their natal host plant, tomato or bugweed, N. cyanescens females laid significantly more eggs in a dome containing bugweed fruit. However, 15% of females originating from tomato laid eggs exclusively in the dome with tomato, against 3% of females originating from bugweed.  相似文献   

11.
When female blow flies Lucilia sericata and Phormia regina (Diptera: Calliphoridae) oviposit in aggregations on carrion, even‐aged larval offspring reportedly develop faster, and fewer are parasitized or preyed upon. The benefits of aggregated oviposition equally affect con‐ and heterospecific larvae sharing a resource. The benefits imply that female blow flies engage in coordinated, pheromone‐mediated oviposition behavior. Yet, repeated attempts to identify oviposition pheromones have failed invoking doubt that they exist. Simply by regurgitating and feeding on carrion, flies may produce attractive semiochemicals. If flies were to aggregate in response to feeding flies rather than ovipositing flies, then the semiochemical cue(s) may be associated with the salivary gland. Working with L. sericata and P. regina and using liver as a surrogate oviposition medium, we test the hypotheses, and present data in their support, that (i) gravid or nongravid females ovipositing and/or feeding on liver enhance its attractiveness to gravid and nongravid females; (ii) females respond to semiochemicals from feeding heterospecific females; (iii) females respond equally well to semiochemicals from feeding con‐ and heterospecific females; (iv) macerated head tissues of females applied to liver enhance its attractiveness; and (v) females in direct contact with and feeding on liver, but not when next to yet physically separated from liver, enhance attraction of flies. We conclude that oviposition site‐seeking females do not respond to an oviposition pheromone. Instead, they appear to coopt semiochemicals associated with feeding flies as resource indicators, taking chances that resources are suitable for oviposition, and that ovipositing flies are present.  相似文献   

12.
Adult cabbage root fly (Erioischia brassicae (Bouché)) exhibited a diurnal periodicity in behaviour. Trapping tests indicated that the flies fed from hedgerow flowers in the morning, visited the crop in the early afternoon and returned to the hedges in the late afternoon. In the laboratory the flies also showed a cyclical pattern in behaviour. Feeding preceded oviposition by 3 days and this was reflected in the field by a relative increase in the movement of females away from the hedges and to the crop when they became gravid. The diurnal periodicity and the cycle in behaviour of males was similar to that of the females, indicating that some of the flies' movement was non-appetitive. The tendency of flies to stay for most of the day at hedges resulted in progressive declines in the numbers captured with increasing distances from hedges.  相似文献   

13.
Abstract: To predict possible locations of Lygocoris pabulinus (L) in the field during the summer, we determined their oviposition preference under summer conditions. With L. pabulinus reared on potato, oviposition preference was determined for potato, tomato or green bean. As preference may depend on larval or early adult experience, the oviposition preference of bugs reared on green bean for three generations, and of bugs captured from the field 12 h prior to the experiment was also determined. All females showed a strong preference for potato plants, on which fecundity was higher. Hence, although L. pabulinus is a generalist in its feeding habits, the summer generation seems to be an oviposition specialist. Aggregation of ovipositing females does not seem to occur; similar amounts of eggs were oviposited in plants with clip cages containing conspecifics as in plants without conspecifics. More eggs were oviposited in damaged plants than in undamaged plants. Plant volatiles released upon damage may aid L. pabulinus females in finding suitable oviposition sites.  相似文献   

14.
Six‐hundred individual female cabbage root flies (Delia radicum L.) (Diptera: Anthomyiidae) were each observed for 20 min under laboratory conditions to record how they behaved after landing on a host or a non‐host plant. Fly movements were recorded on host plants [cabbage –Brassica oleracea var. capitata (Cruciferae)] and non‐host plants [clover –Trifolium subterraneum L. (Papilionaceae)] surrounded by bare soil and on cabbage surrounded by clover. The most frequently observed behaviours made by the flies were (1) hops/spiral flights and (2) walks/runs. In the bare soil situation, the 50 individual flies observed in each treatment made 66 hops/spiral flights on the cabbage and 94 on the clover. When the two plants were tested together the movements were not additive as, instead of the expected 160 hops/spiral flights in the mixed plant treatment, the flies made 210 hops/spiral flights when they landed initially on cabbage but only 130 when they landed initially on clover. Few of the flies that landed initially on clover moved onto the host plant, even though the host plant was only a few centimetres away. The duration of the individual walks and runs made by the cabbage root flies were similar on both the host and non‐host plants. The only differences were the numbers of walks/runs made and the time the flies remained inactive. On the host plants, the females made four walks/runs, each of about 12 s duration, interspersed by rest periods that totalled 1.5 min. In contrast, on the non‐host plants the females made 10 walks/runs, each of about 9 s duration, interspersed by rest periods that totalled 7 min. Therefore, after landing on a plant, the flies, on average, left the host plant after 2.25 min and the non‐host plant after 8.5 min. Our conclusion is that the protracted time spent on the non‐host plants is the mechanism that disrupts insects from finding host plants in diverse plantings. Hence, the flies were arrested by non‐host plants rather than being repelled or deterred as suggested in earlier studies.  相似文献   

15.
1. Parasitoids are known to utilise learning of herbivore‐induced plant volatiles (HIPVs) when foraging for their herbivorous host. In natural situations these hosts share food plants with other, non‐suitable herbivores (non‐hosts). Simultaneous infestation of plants by hosts and non‐hosts has been found to result in induction of HIPVs that differ from host‐infested plants. Each non‐host herbivore may have different effects on HIPVs when sharing the food plant with hosts, and thus parasitoids may learn that plants with a specific non‐host herbivore also contain the host. 2. This study investigated the adaptive nature of learning by a foraging parasitoid that had acquired oviposition experience on a plant infested with both hosts and different non‐hosts in the laboratory and in semi‐field experiments. 3. In two‐choice preference tests, the parasitoid Cotesia glomerata shifted its preference towards HIPVs of a plant–host–non‐host complex previously associated with an oviposition experience. It could, indeed, learn that the presence of its host is associated with HIPVs induced by simultaneous feeding of its host Pieris brassicae and either the non‐host caterpillar Mamestra brassicae or the non‐host aphid Myzus persicae. However, the learned preference found in the laboratory did not translate into parasitisation preferences for hosts accompanying non‐host caterpillars or aphids in a semi‐field situation. 4. This paper discusses the importance of learning in parasitoid foraging, and debates why observed learned preferences for HIPVs in the laboratory may cancel out under some field experimental conditions.  相似文献   

16.
Recent laboratory studies of mass‐reared flies in small cages have found that periods of just 24‐ or 48‐h access to yeast hydrolysate can substantially enhance mating performance of mass‐reared male Queensland fruit flies, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (‘Q‐flies’). Using field cage tests that provide a better approximation of nature, we here investigated whether access to yeast hydrolysate for 48 h after adult emergence improves the ability of male and female mass‐reared, sterile Q‐flies to compete sexually with wild‐type flies that had been provided continuous access to yeast hydrolysate. Mating probability of sterile males was significantly increased by 48‐h access to yeast hydrolysate; sterile males provided 48‐h access to yeast hydrolysate had mating probability similar to that of wild males provided continuous access to yeast hydrolysate, whereas sterile males deprived of access to yeast hydrolysate had much lower mating probability. Unlike males, access to yeast hydrolysate for 48 h did not increase mating probability of sterile female Q‐flies. We instead found that wild females provided continuous access to yeast hydrolysate had higher mating probability than sterile females that did or did not have 48‐h access to yeast hydrolysate. This result raises the possibility that a bisexual Q‐fly strain might operate essentially as a male‐only release when the flies are given access to yeast hydrolysate during a 48‐h pre‐release holding period. Sterile males given access to yeast hydrolysate for 48 h mated significantly earlier in the evening than wild males and, as in other recent studies, this tendency was associated with an increased tendency to mate on the trees rather than the cage walls. There was no evidence of sexual isolation in this study, as wild and sterile mass‐reared flies showed no evidence of preferential mating with their own kind. Further studies are now needed to assess the potential for pre‐release access to yeast hydrolysate to improve sexual performance and longevity of sterile, mass‐reared, Q‐flies in the field.  相似文献   

17.
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host‐plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host‐specific oviposition. 2. The present study investigated the role of host‐plant volatiles in host fidelity and oviposition preference of the gall‐boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y‐tube olfactometers. Previous studies suggest that the gall‐boring beetle is undergoing sequential host‐associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host‐plant stems. 4. These findings suggest that the gall‐boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host‐associated mating and oviposition likely play a role in the sequential radiation of the gall‐boring beetle.  相似文献   

18.
19.
Reproductive behavior of Molipteryx fuliginosa (Uhler) was investigated in Primorskii Territory of Russia. From 4 to 18 repeated copulations of one female lasting from 2 to 48 hours were recorded in cages. The behavior of ovipositing females and the stages of oviposition are described for the first time. The number of eggs laid between copulations varied from 1 to 13, the number of oviposition acts, from 4 to 11, and the total female fecundity, from 21 to 38 eggs. Caged females laid eggs on plants and also on dead substrates unsuitable for nymphal feeding, such as cloth, dry branches, and a wooden pole. Copulation of M. fuliginosa was also observed under natural conditions. The preferred mating places of M. fuliginosa in anthropogenically modified habitats and in small-leaved riparian forests were plants of Rubus idaeus L., R. caesius L., and Rubus sp. After mating, females migrated in search of places for oviposition. Single eggs were found on the following plants not known previously as hosts of this bug: Solanum lycopersicum L., Carex sp., Elytrigia repens (L.) Nevski, and Taraxacum officinale Wigg. The females seemed to lack selectivity in the choice of place for oviposition, which was not always associated with host plants, despite their abundance and availability.  相似文献   

20.
W. Brett Mattingly  S. Luke Flory 《Oikos》2011,120(7):1083-1091
Variation in plant quality provides a basis for oviposition site selection for a variety of insects. Of the plant traits that influence plant–insect interactions, plant architecture has received little attention despite its putative role in modulating oviposition behavior. In a common garden comprised of native and non‐native plant species, we assessed how host plant architecture and identity influenced the oviposition behavior of 17‐year periodical cicadas (Homoptera: Cicadidae: Magicicada). On each host, we quantified the availability of branches suitable for oviposition and compared those measures with the branches used by ovipositing cicadas. Using this approach, we determined how the structural attributes of plants (i.e. branch diameter, length and incline) affected oviposition site selection. We then related cicada oviposition preferences to offspring performance by quantifying egg hatching success. On each host species, cicadas selectively used broader and longer branches for oviposition, suggesting that branch architecture provides a basis for oviposition behavior irrespective of plant identity. Broader and longer branches were more abundant on native than on non‐native hosts in our study, contributing to greater oviposition loads among the native species. Egg hatching success was similar among native and non‐native hosts. However, it is possible that the use of native plants for oviposition could enhance offspring output because native hosts generally contained more viable eggs per egg nest and more egg nests per plant. While previous accounts of cicada oviposition preferences have focused on differences in oviposition loads among hosts, our evaluation of within‐host branch selection by ovipositing cicadas helps to clarify oviposition preferences at a higher resolution and demonstrates that plant architecture provides an important basis for oviposition behavior. Furthermore, because branch structure can differ substantially among host species, our results suggest that periodical cicadas may be sensitive to the changes in plant composition that often result from non‐native plant invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号