首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reverse or bidirectional Zoo-FISH suggests that synteny between porcine chromosome 12 (SSC12) and human chromosome 17 (HSA17) is completely conserved. The construction of a high-resolution radiation hybrid (RH) map for SSC12 provides a unique opportunity to determine whether chromosomal synteny is reflected at the molecular level by comparative gene mapping of SSC12 and HSA17. We report an initial, high-resolution RH map of SSC12 on the 12,000-rad IMNpRH2 panel using CarthaGene software. This map contains a total of 320 markers, including 20 microsatellites and 300 ESTs/genes, covering approximately 4836.9 cR12,000. The markers were ordered in 16 linkage groups at LOD 6.0 using framework markers previously mapped on the IMpRH7000-rad SSC12 and porcine genetic maps. Ten linkage groups ordered more than 10 markers, with the largest containing 101 STSs. The resolution of the current RH map is approximately 15.3 kb/cR on SSC12, a significant improvement over the second-generation EST SSC12 RH7000-rad map of 103 ESTs and 15 framework markers covering approximately 2287.2 cR7000. Compared to HSA17, six distinct segments were identified, revealing macro-rearrangements within the apparently complete synteny between SSC12 and HSA17. Further analysis of the order of 245 genes (ESTs) on HSA17 and SSC12 also revealed several micro-rearrangements within a synteny segment. A high-resolution SSC12 RH12,000-rad map will be useful in fine-mapping QTL and as a scaffold for sequencing this chromosome.  相似文献   

2.
A quantitative trait locus (QTL) for ovulation rate on chromosome 3 that peaks at 36 cM has been identified in a Meishan-White composite resource population with an additive effect of 2.2 corpora lutea. As part of an effort to identify the responsible gene(s), typing of additional genes on the INRA-University of Minnesota porcine radiation hybrid (IMpRH) map of SSC3 and comparative analysis of gene order was conducted. We placed 52 known genes and expressed sequence tags, two BAC-end sequences and one microsatellite (SB42) on a framework map that fills gaps on previous RH maps. Data were analysed for two-point and multipoint linkage with the IMpRH mapping tool and were submitted to the IMpRH database (http://imprh.toulouse.inra.fr/). Gene order was confirmed for 42 loci residing in the QTL region (spanning c. 17 Mb of human sequence) by using the high-resolution IMpRH2 panel. Carthagène (http://www.inra.fr/internet/departments/MIA/T/CarthaGene) was used to estimate multipoint marker distance and order using all public markers on SSC3 in the IMpRH database and those typed in this study. For the high-resolution map, only data for markers typed in both panels were used. Comparative analysis of human and porcine maps identified conservation of gene order for SSC3q and multiple blocks of conserved segments for SSC3p, which included six distinct segments of HSA7 and two segments of HSA16. The results of this study allow significant refinement of the SSC3p region that contains an ovulation rate QTL.  相似文献   

3.
Twenty-two and eight significant quantitative trait loci for economically important traits have been located on porcine chromosomes (SSC) 2q and SSC16 respectively, both of which have been shown to correspond to human chromosome 5 (HSA5) by chromosome painting. To provide a comprehensive comparative map for efficient selection of candidate genes, we assigned 117 genes from HSA5 using a porcine radiation hybrid (IMpRH) panel. Sixty-six genes were assigned to SSC2 and 48 to SSC16. One gene was suggested to link to SSC2 markers and another to SSC6. One gene did not link to any gene, expressed sequence tag or marker in the map, including those in the present investigation. This study demonstrated the following: (1) SSC2q21-q28 corresponds to the region ranging from 74.0 to 148.2 Mb on HSA5q13-q32 and the region from 176.0 to 179.3 Mb on HSA5q35; (2) SSC16 corresponds to the region from 1.4 to 68.7 Mb on HSA5p-q13 and to the region from 150.4 to 169.1 Mb on HSA5q32-q35 and (3) the conserved synteny between HSA5 and SSC2q21-q28 is interrupted by at least two sites and the synteny between HSA5 and SSC16 is also interrupted by at least two sites.  相似文献   

4.
To provide a gene-based comparative map and to examine a porcine genome assembly using bacterial artificial chromosome-based sequence, we have attempted to assign 128 genes localized on human chromosome 14q (HSA14q) to a porcine 7000-rad radiation hybrid (IMpRH) map. This study, together with earlier studies, has demonstrated the following. (i) 126 genes were incorporated into two SSC7 RH linkage groups by C artha G ene analysis. (ii) In the remaining two genes, TOX4 linked to TCRA located in SSC7 by two-point analysis, whereas SIP1 showed no significant linkage with any gene/marker registered in the IMpRH Web Server. (iii) In the two groups, the gene clusters located from 19.9 to 36.5 Mb on HSA14q11.2-q13.3 and from 64.0 to 104.3 Mb on HSA14q23-q32.33 respectively were assigned to SSC7q21-q26. (iv) Comparison of the gene order between the present RH map and the latest porcine sequence assembly revealed some inconsistencies, and a redundant arrangement of 16 genes in the sequence assembly.  相似文献   

5.
Economically important traits such as growth and backfat in pigs have been shown to be influenced by genes in swine chromosome (SSC) 10q12-->qter corresponding to human chromosome (HSA) 10p. However, since gene information in the swine chromosomal region was limited, we attempted to generate a dense comparative map between SSC10 and HSA10 by mapping the 115 genes of HSA10 to a swine RH map (IMpRH map). In the mapping ten genes were assigned to SSC10, 88 to SSC14, and one to SSC3. One gene was suggested to link to SSC3, and another to SSC9. The correspondences between HSA10 and SSC10 and between HSA10 and SSC14 were essentially consistent with the observations obtained from bi/uni-directional chromosome painting or other results. This study further indicated that a large number of intrachromosomal rearrangements occurred in the synteny-conserved regions following species separation.  相似文献   

6.
A high-resolution radiation hybrid map of porcine chromosome 6   总被引:2,自引:0,他引:2  
A high-resolution comprehensive map was constructed for porcine chromosome (SSC) 6, where quantitative trait loci (QTL) for reproduction and meat quality traits have been reported to exist. A radiation hybrid (RH) map containing 105 gene-based markers and 15 microsatellite markers was constructed for this chromosome using a 3000-rad porcine/hamster RH panel. In total, 40 genes from human chromosome (HSA) 1p36.3-p22, 29 from HSA16q12-q24, 17 from HSA18p11.3-q12 and 19 from HSA19q13.1-q13.4 were assigned to SSC6. All primers for these gene markers were designed based on porcine gene or EST sequences, and the orthologous status of the gene markers was confirmed by direct sequencing of PCR products amplified from separate Meishan and Large White genomic DNA pools. The RH map spans SSC6 and consists of six linkage groups created by using a LOD score threshold of 4. The boundaries of the conserved segments between SSC6 and HSA1, 16, 18 and 19 were defined more precisely than previously reported. This represents the most comprehensive RH map of SSC6 reported to date. Polymorphisms were detected for 38 of 105 gene-based markers placed on the RH map and these are being exploited in ongoing chromosome wide scans for QTL and eventual fine mapping of genes associated with prolificacy in a Meishan x Large White multigenerational commercial population.  相似文献   

7.
ZOO-FISH mapping shows human chromosomes 1, 9 and 10 share regions of homology with pig chromosome 10 (SSC10). A more refined comparative map of SSC10 has been developed to help identify positional candidate genes for QTL on SSC10 from human genome sequence. Genes from relevant chromosomal regions of the public human genome sequence were used to BLAST porcine EST databases. Primers were designed from the matching porcine ESTs to assign them to porcine chromosomes using the INRA somatic cell hybrid panel (INRA-SCHP) and the INRA-University of Minnesota Radiation Hybrid Panel (IMpRH). Twenty-eight genes from HSA1, 9 and 10 were physically mapped: fifteen to SSC10 (ACO1, ATP5C1, BMI1, CYB5R1, DCTN3, DNAJA1, EPHX1, GALT, GDI2, HSPC177, OPRS1, NUDT2, PHYH, RGS2, VIM), eleven to SSC1 (ADFP, ALDHIB1, CLTA, CMG1, HARC, PLAA, STOML2, RRP40, TESK1, VCP and VLDLR) and two to SSC4 (ALDH9A1 and TNRC4). Two anonymous markers were also physically mapped to SSC10 (SWR1849 and S0070) to better connect the physical and linkage maps. These assignments have further refined the comparative map between SSC1, 4 and 10 and HSA1, 9 and 10.  相似文献   

8.
9.
Identification of predictive markers in QTL regions that impact production traits in commercial populations of swine is dependent on construction of dense comparative maps with human and mouse genomes. Chromosomal painting in swine suggests that large genomic blocks are conserved between pig and human, while mapping of individual genes reveals that gene order can be quite divergent. High-resolution comparative maps in regions affecting traits of interest are necessary for selection of positional candidate genes to evaluate nucleotide variation causing phenotypic differences. The objective of this study was to construct an ordered comparative map of human chromosome 10 and pig chromosomes 10 and 14. As a large portion of both pig chromosomes are represented by HSA10, genes at regularly spaced intervals along this chromosome were targeted for placement in the porcine genome. A total of 29 genes from human chromosome 10 were mapped to porcine chromosomes 10 (SSC10) and 14 (SSC14) averaging about 5 Mb distance of human DNA per marker. Eighteen genes were assigned by linkage in the MARC mapping population, five genes were physically assigned with the IMpRH mapping panel and seven genes were assigned on both maps. Seventeen genes from human 10p mapped to SSC10, and 12 genes from human 10q mapped to SSC14. Comparative maps of mammalian species indicate that chromosomal segments are conserved across several species and represent syntenic blocks with distinct breakpoints. Development of comparative maps containing several species should reveal conserved syntenic blocks that will allow us to better define QTL regions in livestock.  相似文献   

10.
We are constructing high-resolution, chromosomal 'test' maps for the entire pig genome using a 12,000-rad WG-RH panel (IMNpRH2(12,000-rad))to provide a scaffold for the rapid assembly of the porcine genome sequence. Here we present an initial, comparative map of human chromosome (HSA) 11 with pig chromosomes (SSC) 2p and 9p. Two sets of RH mapping vectors were used to construct the RH framework (FW) maps for SSC2p and SSC9p. One set of 590 markers, including 131 microsatellites (MSs), 364 genes/ESTs, and 95 BAC end sequences (BESs) was typed on the IMNpRH2(12,000-rad) panel. A second set of 271 markers (28 MSs, 138 genes/ESTs, and 105 BESs) was typed on the IMpRH(7,000-rad) panel. The two data sets were merged into a single data-set of 655 markers of which 206 markers were typed on both panels. Two large linkage groups of 72 and 194 markers were assigned to SSC2p, and two linkage groups of 84 and 168 markers to SSC9p at a two-point LOD score of 10. A total of 126 and 114 FW markers were ordered with a likelihood ratio of 1000:1 to the SSC2p and SSC9p RH(12,000-rad) FW maps, respectively, with an accumulated map distance of 4046.5 cR(12,000 )and 1355.2 cR(7,000 )for SSC2p, and 4244.1 cR(12,000) and 1802.5 cR(7,000) for SSC9p. The kb/cR ratio in the IMNpRH2(12,000-rad) FW maps was 15.8 for SSC2p, and 15.4 for SSC9p, while the ratio in the IMpRH(7,000-rad) FW maps was 47.1 and 36.3, respectively, or an approximately 3.0-fold increase in map resolution in the IMNpRH(12,000-rad) panel over the IMpRH(7,000-rad) panel. The integrated IMNpRH(12,000-rad) andIMpRH(7,000-rad) maps as well as the genetic and BAC FPC maps provide an inclusive comparative map between SSC2p, SSC9p and HSA11 to close potential gaps between contigs prior to sequencing, and to identify regions where potential problems may arise in sequence assembly.  相似文献   

11.
A first-generation EST RH comparative map of the porcine and human genome   总被引:10,自引:0,他引:10  
We have constructed a first-generation EST radiation hybrid comparative map of the porcine genome by assigning 1058 markers to the IMpRH7000 panel. Chromosomal localization was determined with a 2pt LOD of 4.8 for 984 markers, using the IMpRH mapping tool. Annotated ESTs represent 46.2% or 489 of the markers. Marker distribution was not stochastic and ranged from 0.41 for SSC8 to 1.77 for SSC12, respectively. Two hundred fifty-one markers assigned to the physical map of the pig did not find a homologous sequence in V22 of the human genome assembly, indicative of gaps in the assembled human genome sequence. The comparative porcine/human map covers 3290 MB, or 98.3% of the presumed size of the human genome. However, 60 breakpoints were identified between chromosomes, as well as 90 micro-rearrangements within synteny groups. Six porcine chromosomes—SSC2, 5, 6, 7, 12, and 14—correspond to the three gene-richest human chromosomes, HSA17, 19, and 22, and show above average marker density. Porcine Chrs 1, 8, 11, and X display a low DNA/marker ratio and correspond to the 'genome deserts' on HSA 18, 4, 13, and X.  相似文献   

12.
Integration of porcine chromosome 13 maps   总被引:2,自引:0,他引:2  
In order to expand the comparative map between human chromosome 3 (HSA3) and porcine chromosome 13 (SSC13), seven genes from HSA3 were mapped on SSC13 by fluorescence in situ hybridisation (FISH), viz. ACAA1, ACPP, B4GALT4, LTF, MYLK, PDHB and RARB. With a view to integrating this expanded comparative map with the existing SSC13 linkage map, we used the INRA-University of Minnesota porcine Radiation Hybrid panel (IMpRH) to localize more precisely and to order 15 genes on the SSC13 map, viz. ACPP, ADCY5, APOD, BCHE, CD86, DRD3, GAP43, PCCB, RAF1, RHO, SI, TF, TFRC, TOP2B and ZNF148. In this way, we were able to create an integrated map, containing 38 type I and 81 type II markers, by correlating the linkage, radiation hybrid (RH) and cytogenetic maps of SSC13. This integrated map will give us the opportunity to take maximal advantage of the comparative mapping strategy for positional candidate cloning of genes responsible for economically important traits.  相似文献   

13.
A high-resolution comparative RH map of porcine Chromosome (SSC) 2   总被引:2,自引:0,他引:2  
A high-resolution comparative map was constructed for porcine Chromosome (SSC) 2, where a QTL for back fat thickness (BFT) is located. A radiation hybrid (RH) map containing 33 genes and 25 microsatellite markers was constructed for this chromosome with a 3000-rad porcine RH panel. In total, 16 genes from human Chromosome (HSA) 11p, HSA19p, and HSA5q were newly assigned to SSC2. One linkage group was observed at LOD 3.0, and five linkage groups at LOD 4.0. Comparison of the porcine RH map with homologous human gene orders identified four conserved segments between SSC2 and HSA11, HSA19, and HSA5. Concerning HSA11, a rearrangement of gene order is observed. The segment HSA11p15.4-q13 is inverted on SSC2 when compared with the distal tip of SSC2p, which is homologous to HSA11p15.5. The boundaries of the conserved segments between human and pig were defined more precisely. This high-resolution comparative map will be a valuable tool for further fine mapping of the QTL area. Received: 10 November 2000 / Accepted: 23 January 2001  相似文献   

14.
The recently published draft sequence of the human genome will provide a basic reference for the comparative mapping of genomes among mammals. In this study, we selected 214 genes with complete coding sequences on Homo sapiens chromosome 4 (HSA4) to search for orthologs and expressed sequence tag (EST) sequences in eight other mammalian species (cattle, pig, sheep, goat, horse, dog, cat, and rabbit). In particular, 46 of these genes were used as landmarks for comparative mapping of HSA4 and Sus scrofa chromosome 8 (SSC8); most of HSA4 is homologous to SSC8, which is of particular interest because of its association with genes affecting the reproductive performance of pigs. As a reference framework, the 46 genes were selected to represent different cytogenetic bands on HSA4. Polymerase chain reaction (PCR) products amplified from pig DNA were directly sequenced and their orthologous status was confirmed by a BLAST search. These 46 genes, plus 11 microsatellite markers for SSC8, were typed against DNA from a pig-mouse radiation hybrid (RH) panel with 110 lines. RHMAP analysis assigned these 57 markers to 3 linkage groups in the porcine genome, 52 to SSC8, 4 to SSC15, and 1 to SSC17. By comparing the order and orientation of orthologous landmark genes on the porcine RH maps with those on the human sequence map, HSA4 was recognized as being split into nine conserved segments with respect to the porcine genome, seven with SSC8, one with SSC15, and one with SSC17. With 41 orthologous gene loci mapped, this report provides the largest functional gene map of SSC8, with 30 of these loci representing new single-gene assignments to SSC8.  相似文献   

15.
An updated linkage and comparative map of porcine chromosome 18   总被引:2,自引:0,他引:2  
Swine chromosome 18 (SSC18) has the poorest marker density in the USDA-MARC porcine linkage map. In order to increase the marker density, seven genes from human chromosome 7 (HSA7) expected to map to SSC18 were selected for marker development. The genes selected were: growth hormone releasing hormone receptor (GHRHR), GLI-Kruppel family member (GLI3), leptin (LEP), capping protein muscle Z-line alpha 2 subunit (CAPZA2), beta A inhibin (INHBA), T-cell receptor beta (TCRB) and T-cell receptor gamma (TCRG). Large-insert clones (YACs, BACs and cosmids) that contained these genes, as well as two previously mapped microsatellite markers (SW1808 and SW1984), were identified and screened for microsatellites. New microsatellite markers were developed from these clones and mapped. Selected clones were also physically assigned by fluorescence in situ hybridization (FISH). Fifteen new microsatellite markers were added to the SSC18 linkage map resulting in a map of 28 markers. Six genes have been included into the genetic map improving the resolution of the SSC18 and HSA7 comparative map. Assignment of TCRG to SSC9 has identified a break in conserved synteny between SSC18 and HSA7.  相似文献   

16.
17.
We previously mapped a locus for porcine intramuscular fat content (IMF) by linkage analysis to a 17.1-cM chromosome interval on Sus scrofa chromosome 7 (SSC7) flanked by microsatellite markers SW1083 and SW581. In this study, we identified 34 microsatellite markers and 14 STSs from the 17.1-cM IMF quantitative trait loci (QTL) region corresponding to HSA14q and aligned those loci using the INRA-University of Minnesota porcine radiation hybrid (IMpRH) panel. We then constructed a 5.2-Mb porcine bacterial artificial chromosome (BAC) contig of this region that was aligned using the RH panel. Finally, the IMF QTL was fine-mapped to 12.6 cM between SJ169 and MM70 at the 0.1% chromosome-wise significance level by genotyping the previously studied F2 resource family with 17 additional microsatellites. We also demonstrated that the SJ169-MM70 interval spans approximately 3.0 Mb and contains at least 12 genes: GALC, GPR65, KCNK10, SPATA7, PTPN21, FLJ11806, EML5, TTC8, CHES1, CAP2P1, CHORDC2P and C14orf143.  相似文献   

18.
We constructed a 5000-rad comprehensive radiation hybrid (RH) map of the porcine (Sus scrofa) genome and compared the results with the human genome. Of 4475 typed markers, 4016 (89.7%) had LOD >5 compared with the markers used in our previous RH map by means of two-point analysis and were grouped onto the 19 porcine chromosomes (SSCs). All mapped markers had LOD >3 as determined by RHMAPPER analysis. The current map comprised 430 microsatellite (MS) framework markers, 914 other MS markers, and 2672 expressed sequence tags (ESTs). The whole-genome map was 8822.1 cR in length, giving an average marker density of 0.342 Mb/cR. The average retention frequency was 35.8%. Using BLAST searches of porcine ESTs against the RefSeq human nucleotide and amino acid sequences (release 22), we constructed high-resolution comparative maps of each SSC and each human chromosome (HSA). The average distance between ESTs in the human genome was 1.38 Mb. SSC contained 50 human chromosomal syntenic groups, and SSC11, SSC12, and SSC16 were only derived from the HSA13q, HSA17, and HSA5 regions, respectively. Among 38 porcine terminal regions, we found that at least 20 regions have been conserved between the porcine and human genomes; we also found four paralogous regions for the major histocompatibility complex (MHC) on SSC7, SSC2, SSC4, and SSC1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
We report the chromosomal assignment of 18 porcine genes to human homologues using the INRA-Minnesota swine radiation hybrid panel (IMpRH). These genes (CACNA1C, COL2A1, CPNE8, C3F, C12ORF4, DDX11, GDF11, HOXC8, KCNA1, MDS028, TMEM106C, NR4A1, PHB2, PRICKLE1, Q6ZUQ4, SCN8A, TUBA8 and USP18) are located on porcine chromosome 5 (SSC5) and represent positional and functional candidates for arthrogryposis multiplex congenita (AMC), which maps to SSC5. CPNE8, PRICKLE1, Q6ZUQ4 and TUBA8 were mapped to the interval for pig AMC between microsatellites SW152 and SW904. Three SNPs in TUBA8 co-segregated with the AMC phenotype in 230 pigs of our research population without recombination and could be used as a genetic marker test for AMC. In addition, we provide evidence that a small chromosomal region of HSA22q11.2 evolutionarily corresponds to SSC5q12-q22 (and contains the human homologues of porcine SW152, Q6ZUQ4, TUBA8 and USP18), while the regions flanking HSA22q11.2 on SSC5 correspond to HSA12p13 and HSA12q12. We identified seven distinct chromosomal blocks, further supporting extensive rearrangements between genes on HSA12 and HSA22 in the AMC region on SSC5.  相似文献   

20.
The objectives of this study were to assign both microsatellite and gene-based markers on porcine chromosome X to two radiation hybrid (RH) panels and to develop a more extensive integrated map of SSC-X. Thirty-five microsatellite and 20 gene-based markers were assigned to T43RH, and 16 previously unreported microsatellite and 15 gene-based markers were added to IMpRH map. Of these, 30 microsatellite and 12 gene-based markers were common to both RH maps. Twenty-two gene-based markers were submitted to BLASTN analysis for identification of orthologues of genes on HSA-X. Single nucleotide polymorphisms (SNPs) were detected for 12 gene-based markers, and nine of these were placed on the genetic map. A total of 92 known loci are present on at least one porcine chromosome X map. Thirty-seven loci are present on all three maps; 31 loci are found on only one map. Location of 33 gene-based markers on the comprehensive map translates into an integrated comparative map that supports conservation of gene order between SSC-X and HSA-X. This integrated map will be valuable for selection of candidate genes for porcine quantitative trait loci (QTLs) that map to SSC-X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号