首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody-overlay lectin microarray (ALM) has been used for targeted glycan profiling to identify disease-related protein glycoforms. In this context, high sensitivity is desired because it allows for the identification of disease-related glycoforms that are often present at low concentrations. We describe a new tyramide signal amplification (TSA) for the antibody-overlay lectin microarray procedure for sensitive profiling of glycosylation patterns. We demonstrate that TSA increased the sensitivity of the microarray over 100 times for glycan profiling using the model protein prostate specific antigen (PSA). The glycan profile of PSA enriched from LNCAP cells, obtained at a subnanogram level with the aid of TSA, was consistent with the previous reports. We also established the glycan profile of prostate specific membrane antigen (PSMA) using the TSA and ALM. Thus, the TSA for antibody-overlay lectin microarray is a sensitive, rapid, comprehensive, and high-throughput method for targeted glycan profiling and can potentially be used for the identification of disease-related protein glycoforms.  相似文献   

2.
Lectin microarray is an emerging technique, which will accelerate glycan profiling and discovery of glycan-related biomarkers. One of the most important stages in realizing the potential of the technique is to achieve sufficiently high sensitivity to detect even the low concentrations of some target glycoproteins which occur in sera or tissues. Previously, we developed a lectin microarray based on an evanescent-field fluorescence-assisted detection principle that allows rapid profiling of glycoproteins. Here, we report optimization of procedures for lectin spotting and immobilization to improve the sensitivity and reproducibility of the lectin microarray. The improved microarray allows high-sensitivity detection of even monovalent oligosaccharides that generally have a low affinity with lectins (K(d)>10(-6) M). The LOD observed for RCA120, a representative plant lectin, with asialofetuin, and an asialo-biantennary N-glycan probe were determined to be 100 pg/mL and 100 pM, respectively. With the improved lectin microarray system, closely related structural isomers, i.e., Le(a) and Le(x), were clearly differentiated by the difference in signal patterns on relevant multiple lectins, even though specific lectins to detect these glycan structures were not available. The result proved a previously proposed concept of lectin-based glycan profiling.  相似文献   

3.
Lectins are a diverse group of carbohydrate-binding proteins. Each lectin has its own specificity profile. It is believed that lectins exist in all living organisms that produce glycans. From a practical viewpoint, lectins have been used extensively in biochemical fields including proteomics due to their usefulness as detection and enrichment tools for specific glycans. Nevertheless, they have often been underestimated as probes, especially compared with antibodies, because of their low affinity and broad specificity. However, together with the concept of glycomics, such properties of lectins are now considered to be suitable for the task of 'profiling' in order to cover a wider range of ligands. Recently there has been rapid movement in the field of proteomics aimed at the investigation of glycan-related biomarkers. This is partly because of limitations of the present approach of simply following changes in protein-level expression, without paying sufficient attention to the fact and effects of glycosylation. The trend is reflected in the frequent use of lectins in the contexts of glycoprotein enrichment and glycan profiling. However, there are many aspects to be considered in using lectins, which differ considerably from antibodies. In this article, the author, as a developer of two unique methodologies, frontal affinity chromatography (FAC) and the lectin microarray, describes critical points concerning the use of lectins, together with the concept, strategy and means to achieve advances in these emerging glycan profiling technologies.  相似文献   

4.
An ultra-sensitive method for glycan analysis targeting small tissue sections (1.5 mm in diameter) is described as an application of a recently-established lectin microarray technology. The developed system achieved a high level of detection of a tissue section consisting of approximately 500 cells for differential profiling, where both N- and O-glycans attached to a pool of glycoproteins are subjected to multiplex analysis with 43 lectins. By using an optimized protocol for differential glycan analysis, sections of adenocarcinoma (n = 28) and normal epithelia (n = 12) of the colon were analyzed in an all-in-one manner. As a result, Wisteria floribunda agglutinin (WFA) was found to clearly differentiate cancerous from normal epithelia with P < 0.0001. The obtained results correlated well with the subsequent histochemical study using biotinylated WFA. Thus, the developed technology proved to be valid for expanding the lectin microarray applications to tissue-based glycomics, and hence, should accelerate a discovery phase of glycan-related biomarkers.  相似文献   

5.
The extensive involvement of glycan-binding proteins (GBPs) as regulators in diverse biological phenomena provides a fundamental reason to investigate their glycan-binding specificities. Here, we developed a glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of GBPs. Eighty-nine selected multivalent glycoconjugates comprising natural glycoproteins, neo-glycoproteins, and polyacrylamide (PAA)-conjugated glycan epitopes were immobilized on an epoxy-activated glass slide. The GBP binding was monitored by an evanescent-field fluorescence-assisted scanner at equilibrium without washing steps. The detection principle also allows direct application of unpurified GBPs with the aid of specific antibodies. Model experiments using plant lectins (RCA120, ConA, and SNA), galectins (3 and 8), a C-type lectin (DC-SIGN) and a siglec (CD22) provided data consistent with previous work within 4 h using less than 40 ng of GBPs per analysis. As an application, serum profiling of antiglycan antibodies (IgG and IgM) was performed with Cy3-labeled secondary antibodies. Moreover, novel carbohydrate-binding ability was demonstrated for a human IL-18 binding protein. Thus, the developed glycan array is useful for investigation of various types of GBPs, with the added advantage of wash-free analysis.  相似文献   

6.
This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The need for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography.  相似文献   

7.
The current interest in applying systems biology approaches to studying an organism's form or function promises to reveal further insights into the role of glycosylation in cells and whole organisms. This has prompted the development of a rapid, sensitive method of profiling the glycan component of both glycosphingolipids and glycoproteins from a single sample. Here we report a new mass spectrometric screening strategy for characterizing glycosphingolipid-derived oligosaccharides, which can be integrated into an existing highly sensitive glycoprotein glycomics strategy. Using ceramide glycanase to release the glycans from glycosphingolipids, this method provides a reliable profile of the glycosphingolipid-derived glycans present in a sample and has revealed new glycan structures. Glycoproteins are also efficiently recovered using this method, allowing the subsequent analysis of glycoprotein-derived glycans by mass spectrometry. The high sensitivity of this glycomic screening method allowed us to directly characterize the sialyl Le(x) epitope from mouse brain for the first time, where it was observed on an O-mannose structure. Thus, we present a mass spectrometric method that allows glycomic screening of N- and O-glycans as well as glycosphingolipid-derived glycans from a single tissue.  相似文献   

8.
Protein glycosylation is a critical subject attracting increasing attention in the field of proteomics as it is expected to play a key role in the investigation of histological and diagnostic biomarkers. In this context, an enormous number of glycoproteins have now been nominated as disease-related biomarkers. However, there is no appropriate strategy in the current proteome platform to qualify such marker candidate molecules, which relates their specific expression to particular diseases. Here, we present a new practical system for focused differential glycan analysis in terms of antibody-assisted lectin profiling (ALP). In the developed procedure, (i) a target protein is enriched from clinic samples (e.g. tissue extracts, cell supernatants, or sera) by immunoprecipitation with a specific antibody recognizing a core protein moiety; (ii) the target glycoprotein is quantified by immunoblotting using the same antibody used in (i); and (iii) glycosylation difference is analyzed by means of antibody-overlay lectin microarray, an application technique of an emerging glycan profiling microarray. As model glycoproteins having either N-linked or O-linked glycans, prostate-specific antigen or podoplanin, respectively, were subjected to systematic ALP analysis. As a result, specific signals corresponding to the target glycoprotein glycans were obtained at a sub-picomole level with the aid of specific antibodies, whereby disease-specific or tissue-specific glycosylation changes could be observed in a rapid, reproducible, and high-throughput manner. Thus, the established system should provide a powerful pipeline in support of on-going efforts in glyco-biomarker discovery.  相似文献   

9.
Isothermal titration calorimetry was used to characterize thermodynamically the association of hevein, a lectin from the rubber tree latex, with the dimer and trimer of N-acetylglucosamine (GlcNAc). Considering the changes in polar and apolar accessible surface areas due to complex formation, we found that the experimental binding heat capacities can be reproduced adequately by means of parameters used in protein-unfolding studies. The same conclusion applies to the association of the lectin concanavalin A with methyl-α-mannopyranoside. When reduced by the polar area change, binding enthalpy values show a minimal dispersion around 100°C. These findings resemble the convergence observed in protein-folding events; however, the average of reduced enthalpies for lectin-carbohydrate associations is largely higher than that for the folding of proteins. Analysis of hydrogen bonds present at lectin-carbohydrate interfaces revealed geometries closer to ideal values than those observed in protein structures. Thus, the formation of more energetic hydrogen bonds might well explain the high association enthalpies of lectin-carbohydrate systems. We also have calculated the energy associated with the desolvation of the contact zones in the binding molecules and from it the binding enthalpy in vacuum. This latter resulted 20% larger than the interaction energy derived from the use of potential energy functions. Proteins 29:467–477, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
11.
The glycome represents the total set of glycans expressed in a cell. The glycome has been assumed to vary between cell types, stages of development and differentiation, and during malignant transformation. Analysis of the glycome provides a basis for understanding the functions of glycans in these cellular processes. Recently, a technique called lectin microarray was developed for rapid profiling of glycosylation, although its use was mainly restricted to glycoproteins of cell lysates, and thus unable to profile the intact cell surface glycans. Here we report a simple and sensitive procedure based on this technology for direct analysis of the live mammalian cell-surface glycome. Fluorescent-labeled live cells were applied in situ to the established lectin microarray consisting of 43 immobilized lectins with distinctive binding specificities. After washing, bound cells were directly detected by an evanescent-field fluorescence scanner in a liquid phase without fixing and permeabilization. The results obtained by differential profiling of CHO and its glycosylation-defective mutant cells, and splenocytes of wild-type and beta1-3-N-acetylglucosaminyltransferase II knockout mice performed as model experiments agreed well with their glycosylation phenotypes. We also compared cell surface glycans of K562 cells before and after differentiation and found a significant increase in the expression of O-glycans on differentiated cells. These results demonstrate that the technique provides a novel strategy for profiling global changes of the mammalian cell surface glycome.  相似文献   

12.
We recently developed a novel system for lectin microarray based on the evanescent-field fluorescence-detection principle, by which even weak lectin-oligosaccharide interactions are detectable without a washing procedure. For its practical application, cell glycan analysis was performed for Chinese hamster ovary (CHO) cells and their glycan profile was compared with those of their glycosylation-defective Lec mutants. Each of the cell surface extracts gave a significantly different profile from that of the parental CHO cells in a manner reflecting denoted biosynthetic features. Hence, the developed lectin microarray system is considered to be fully applicable for differential glycan profiling of crude samples.  相似文献   

13.
The potential of affinity chromatography for characterizing lectin-carbohydrate interactions is investigated. First, the effect of galactose on the chromatographic behavior of Ricinus communis phytohemagglutinin on Sepharose 4B is used to establish that quantitative affinity chromatography on polysaccharide matrices affords an unequivocal means of characterizing the interactions of lectins with monosaccharides in solution. Second, a method of characterizing lectin-glycoprotein interactions by affinity chromatography is illustrated in an experimental study with Sephadex G-50 as affinity matrix for examination of the interaction between concanavalin A and ovalbumin. Third, although no general solution to the problem of ligand multivalency in quantitative affinity chromatography has been found, an experimental protocol has been devised for the situation in which the partitioning solute (lectin) is univalent.  相似文献   

14.
Dai L  Liu Y  He J  Flack CG  Talsma CE  Crowley JG  Muraszko KM  Fan X  Lubman DM 《Proteomics》2011,11(20):4021-4028
We have recently demonstrated that Notch pathway blockade by γ-secretase inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Multiforme (GBM) through reduced proliferation and induced apoptosis. However, the detailed mechanism by which the manipulation of Notch signal induces alterations on post-translational modifications such as glycosylation has not been investigated. Herein, we present a differential profiling work to detect the change of glycosylation pattern upon drug treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures has been performed by lectin microarray on live cells followed by the detection of N-linked glycoproteins from cell lysates using multi-lectin chromatography and label-free quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were identified in the CSC- and GSI-treated groups, respectively, filtered by a combination of decoy database searching and Trans-Proteomic Pipeline (TPP) processing. Although no significant changes were detected from the lectin microarray experiment, 7 differentially expressed glycoproteins with high confidence were captured after the multi-lectin column including key enzymes involved in glycan processing. Functional annotations of the altered glycoproteins suggest a phenotype transformation of CSCs toward a less tumorigenic form upon GSI treatment.  相似文献   

15.
We previously showed a pivotal role of the polysaccharide (PS) moiety in the cell wall of the Lactobacillus casei strain Shirota (YIT 9029) as a possible immune modulator (E. Yasuda M. Serata, and T. Sako, Appl. Environ. Microbiol. 74:4746-4755, 2008). To distinguish PS structures on the bacterial cell surface of individual strains in relation to their activities, it would be useful to have a rapid and high-throughput methodology. Recently, a new technique called lectin microarray was developed for rapid profiling of glycosylation in eukaryotic polymers and cell surfaces. Here, we report on the development of a simple and sensitive method based on this technology for direct analysis of intact bacterial cell surface glycomes. The method involves labeling bacterial cells with SYTOX Orange before incubation with the lectin microarray. After washing, bound cells are directly detected using an evanescent-field fluorescence scanner in a liquid phase. Using this method, we compared the cell surface glycomes from 16 different strains of L. casei. The patterns of lectin-binding affinity of most strains were found to be unique. There appears to be two types of lectin-binding profiles: the first is characterized by a few lectins, and the other is characterized by multiple lectins with different specificities. We also showed a dramatic change in the lectin-binding profile of a YIT 9029 derivative with a mutation in the cps1C gene, encoding a putative glycosyltransferase. In conclusion, the developed technique provided a novel strategy for rapid profiling and, more importantly, differentiating numerous bacterial strains with relevance to the biological functions of PS.  相似文献   

16.
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed.  相似文献   

17.
Generating proteomic maps of membrane proteins, common targets for therapeutic interventions and disease diagnostics, has turned out to be a major challenge. Antibody-based microarrays are among the novel rapidly evolving proteomic technologies that may enable global proteome analysis to be performed. Here, we have designed the first generation of a scaleable human recombinant scFv antibody microarray technology platform for cell surface membrane proteomics as well as glycomics targeting intact cells. The results showed that rapid and multiplexed profiling of the cell surface proteome (and glycome) could be performed in a highly specific and sensitive manner and that differential expression patterns due to external stimuli could be monitored.  相似文献   

18.
细胞膜表面糖复合物的糖链结构与肿瘤细胞增殖、侵染、转移等发展过程密切相关.凝集素芯片技术的出现实现了对癌症的糖组进行快速、高通量的检测.通过模式细胞系PANC-1证明了构建的凝集素芯片体系的准确性、重复性、特异性,应用这一芯片体系初步检测了几种癌细胞系(HT-29、SGC-7901、BEL-7402、H460)的膜表面糖链表达.这几种癌细胞系表面都有唾液酸、乙酰葡萄糖/葡萄糖、乙酰半乳糖/半乳糖、甘露糖等糖链.根据实验结果,推测它们的细胞膜表面α1-6岩藻糖链表达水平可能较高,而α1-3岩藻糖链表达水平较低;这些聚糖可能是癌症潜在的标志物.凝集素芯片有助于推动癌细胞膜表面糖链的快速分析和筛选出癌症相关的糖链标志物.  相似文献   

19.
Choi JK  Choi JY  Kim DG  Choi DW  Kim BY  Lee KH  Yeom YI  Yoo HS  Yoo OJ  Kim S 《FEBS letters》2004,565(1-3):93-100
A statistical method for combining multiple microarray studies has been previously developed by the authors. Here, we present the application of the method to our hepatocellular carcinoma (HCC) data and report new findings on gene expression changes accompanying HCC. From the cross-verification result of our studies and that of published studies, we found that single microarray analysis might lead to false findings. To avoid those pitfalls of single-set analyses, we employed our effect size method to integrate multiple datasets. Of 9982 genes analyzed, 477 significant genes were identified with a false discovery rate of 10%. Gene ontology (GO) terms associated with these genes were explored to validate our method in the biological context with respect to HCC. Furthermore, it was demonstrated that the data integration process increases the sensitivity of analysis and allows small but consistent expression changes to be detected. These integration-driven discoveries contained meaningful and interesting genes not reported in previous expression profiling studies, such as growth hormone receptor, erythropoietin receptor, tissue factor pathway inhibitor-2, etc. Our findings support the use of meta-analysis for a variety of microarray data beyond the scope of this specific application.  相似文献   

20.
Carbohydrate post-translational modifications on proteins are important determinants of protein function in both normal and disease biology. We have developed a method to allow the efficient, multiplexed study of glycans on individual proteins from complex mixtures, using antibody microarray capture of multiple proteins followed by detection with lectins or glycan-binding antibodies. Chemical derivatization of the glycans on the spotted antibodies prevented lectin binding to those glycans. Multiple lectins could be used as detection probes, each targeting different glycan groups, to build up lectin binding profiles of captured proteins. By profiling both protein and glycan variation in multiple samples using parallel sandwich and glycan-detection assays, we found cancer-associated glycan alteration on the proteins MUC1 and CEA in the serum of pancreatic cancer patients. Antibody arrays for glycan detection are highly effective for profiling variation in specific glycans on multiple proteins and should be useful in diverse areas of glycobiology research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号