首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From eluates of F-actin affinity chromatography of chicken brain, we identified a novel actin-binding protein (lasp-2) whose gene was predicted in silico. We cloned cDNA of chicken lasp-2 and analyzed its structure, expression, activity, and localization with lasp-1 (LIM and SH3 protein 1), a previously identified actin-binding protein closely related to lasp-2. Chicken lasp-2 showed high homology to mammalian putative lasp-2. Both chicken lasp-1 and chicken lasp-2 have N-terminal LIM domains, C-terminal SH3 domains, and internal nebulin repeats. However, lasp-2 is greatly different from lasp-1 in the sequence between the second nebulin repeat and a SH3 domain, and the region is conserved in chicken, mouse, and human. As expected from its structural similarity to lasp-1, lasp-2 possessed actin-binding activity and localized with actin filament in filopodia of neuroblastoma. In contrast to lasp-1, which is widely distributed in non-muscle tissues, lasp-2 was highly expressed in brain.  相似文献   

2.
LIM-nebulette (LASP2) is a small focal adhesion protein and a member of the nebulin family of actin binding proteins. This recently identified splice variant of the nebulette locus is widely expressed and highly enriched in neuronal tissue. Other than that LIM-nebulette is a focal adhesion protein and interacts with zyxin, nothing is known about its function. Given that LIM-nebulette has an identical modular organization and overlapping tissue distributions to that of LASP1, we have analyzed the role of LIM-nebulette in comparison with that of LASP1. We find that LIM-nebulette is a dynamic focal adhesion protein that increases the rate of attachment and spreading of fibroblasts on fibronectin coated surfaces. Additionally, LIM-nebulette is recruited from the cortical cytoskeleton in non-motile cells to focal adhesions at the leading edge of stimulated cells. In confluent cultures of HeLa and NIH3T3 cells, LIM-nebulette co-localizes with alpha-catenin in putative adherens junctions, whereas LASP1 is devoid of these areas. Interestingly, overexpression of LIM-nebulette in PC6 cells inhibits neurite outgrowth in response to growth factors. Collectively, our data indicate that LIM-nebulette and LASP1 have distinct roles in the actin cytoskeleton.  相似文献   

3.
Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.  相似文献   

4.
Xin and nebulette are striated muscle-specific actin-binding proteins that both contain multiple actin-binding repeats. The nature of these repeats is different: nebulette has nebulin-like repeats, while Xin contains its own unique repeats. However, the suggestion was made from biochemical data that the Xin-repeats may bind to multiple sites on the actin molecule as was found for nebulin. We have used electron microscopy and the iterative helical real space reconstruction to visualize complexes of F-actin with Xin fragments containing either three or six Xin-repeats, and with the CN5-nebulette fragment, containing five nebulin-like repeats. Our results indicate that Xin and nebulette fragments bind to F-actin in a similar manner and in two distinct modes: in one mode actin subdomain 1 is bound, while in the second mode the binding bridges between a different site on actin subdomains 1/2 of one protomer and subdomains 3/4 of an adjacent actin protomer. Taken together with published data about nebulin, tropomyosin and ADF/cofilin, our results suggest that the ability to bind in multiple modes to the actin protomer is a general property of many actin-binding proteins.  相似文献   

5.
The nebulin family of actin-binding proteins plays an important role in actin filament dynamics in a variety of cells including striated muscle. We report here the identification of a new striated muscle Z-disc associated protein: lasp-2 (LIM and SH3 domain protein-2). Lasp-2 is the most recently identified member of the nebulin family. To evaluate the role of lasp-2 in striated muscle, lasp-2 gene expression and localization were studied in chick and mouse tissue, as well as in primary cultures of chick cardiac and skeletal myocytes. Lasp-2 mRNA was detected as early as chick embryonic stage 25 and lasp-2 protein was associated with developing premyofibril structures, Z-discs of mature myofibrils, focal adhesions, and intercalated discs of cultured cardiomyocytes. Expression of GFP-tagged lasp-2 deletion constructs showed that the C-terminal region of lasp-2 is important for its localization in striated muscle cells. Lasp-2 organizes actin filaments into bundles and interacts directly with the Z-disc protein alpha-actinin. These results are consistent with a function of lasp-2 as a scaffolding and actin filament organizing protein within striated muscle Z-discs.  相似文献   

6.
Nebulin (600-900 kDa) and nebulette (107-109 kDa) are two homologous thin filament-associated proteins in skeletal and cardiac muscles, respectively. Both proteins are capped with a unique region at the amino terminus as well as a serine-rich linker domain and SH3 domains at the COOH terminus. Their significant size difference is attributed to the length of the central region wherein both proteins are primarily composed of approximately 35 amino acid repeats termed nebulin-like repeats or motifs. These motifs are marked by a conserved SXXXY sequence and high affinity binding to F-actin. To further characterize the effects that nebulin-like proteins may have on the striated muscle thin filament, we have cloned, expressed, and purified a five-motif chicken nebulette fragment and tested its interaction with the thin filament regulatory proteins. Both tropomyosin and troponin T individually bound the nebulette fragment, although the affinity of this interaction was significantly increased when tropomyosin-troponin T was tested as a binary complex. The addition of troponin I to the tropomyosin-troponin T complex decreased the binding to the nebulette fragment, indicating an involvement of the conserved T2 region of troponin T in this interaction. F-actin cosedimentation demonstrated that the nebulette fragment was able to significantly increase the affinity of the tropomyosin-troponin assembly for F-actin. The relationships provide a means for nebulin-like motifs to participate in the allosteric regulation of striated muscle contraction.  相似文献   

7.
Focal adhesions are intricate protein complexes that facilitate cell attachment, migration, and cellular communication. Lasp-2 (LIM-nebulette), a member of the nebulin family of actin-binding proteins, is a newly identified component of these complexes. To gain further insights into the functional role of lasp-2, we identified two additional binding partners of lasp-2: the integral focal adhesion proteins vinculin and paxillin. Of interest, the interaction of lasp-2 with its binding partners vinculin and paxillin is significantly reduced in the presence of lasp-1, another nebulin family member. The presence of lasp-2 appears to enhance the interaction of vinculin and paxillin with each other; however, as with the interaction of lasp-2 with vinculin or paxillin, this effect is greatly diminished in the presence of excess lasp-1. This suggests that the interplay between lasp-2 and lasp-1 could be an adhesion regulatory mechanism. Lasp-2’s potential role in metastasis is revealed, as overexpression of lasp-2 in either SW620 or PC-3B1 cells—metastatic cancer cell lines—increases cell migration but impedes cell invasion, suggesting that the enhanced interaction of vinculin and paxillin may functionally destabilize focal adhesion composition. Taken together, these data suggest that lasp-2 has an important role in coordinating and regulating the composition and dynamics of focal adhesions.  相似文献   

8.
LIM and SH3 protein 2 (LASP2) belongs to nebulin family. It has been proven that LASP2 is involved in several cancers; however, its role in cervical cancer is unclear. Herein, we showed that LASP2 was highly expressed in cervical cancer tissues and cell lines. To knockdown LASP2 in cervical cancer cells, small interfering RNAs (siRNAs) targeting LASP2 (si-LASP2) were used. We found that cell proliferation, migration/invasion were markedly reduced after si-LASP2 transfection. A significant increase in E-cadherin expression, and decrease in N-cadherin and vimentin expressions were observed in si-LASP2 transfected cervical cancer cells. Knockdown of LASP2 caused significant inhibitory effect on the PI3K/Akt pathway. Treatment with the activator of the PI3K/Akt pathway, 740Y-P, abolished the effects of si-LASP2 transfection on cervical cancer cells. These findings suggested that LASP2 may be an oncogene through regulating the PI3K/Akt pathway in cervical cancer.  相似文献   

9.
We describe here a novel sarcomeric 145-kD protein, myopalladin, which tethers together the COOH-terminal Src homology 3 domains of nebulin and nebulette with the EF hand motifs of alpha-actinin in vertebrate Z-lines. Myopalladin's nebulin/nebulette and alpha-actinin-binding sites are contained in two distinct regions within its COOH-terminal 90-kD domain. Both sites are highly homologous with those found in palladin, a protein described recently required for actin cytoskeletal assembly (Parast, M.M., and C.A. Otey. 2000. J. Cell Biol. 150:643-656). This suggests that palladin and myopalladin may have conserved roles in stress fiber and Z-line assembly. The NH(2)-terminal region of myopalladin specifically binds to the cardiac ankyrin repeat protein (CARP), a nuclear protein involved in control of muscle gene expression. Immunofluorescence and immunoelectron microscopy studies revealed that myopalladin also colocalized with CARP in the central I-band of striated muscle sarcomeres. Overexpression of myopalladin's NH(2)-terminal CARP-binding region in live cardiac myocytes resulted in severe disruption of all sarcomeric components studied, suggesting that the myopalladin-CARP complex in the central I-band may have an important regulatory role in maintaining sarcomeric integrity. Our data also suggest that myopalladin may link regulatory mechanisms involved in Z-line structure (via alpha-actinin and nebulin/nebulette) to those involved in muscle gene expression (via CARP).  相似文献   

10.
The actin-binding proteins, nebulette, and nebulin, are comprised of a four-domain layout containing an acidic N-terminal region, a repeat domain, a serine-rich-linker region, and a Src homology-3 domain. Both proteins contain homologous N-terminal regions that are predicted to be in different environments within the sarcomere. The nebulin acidic N-terminal region is found at the distal ends of the thin filaments. Nebulette, however, is predicted to extend 150 nm from the center of the Z-line. To dissect out the functions of the N-terminal domain of nebulette, we have performed a yeast two-hybrid screen using nebulette residues 1-86 as bait. We have identified filamin-C, ZASP-1, and tropomyosin-1 as binding partners. Characterization of the nebulette-filamin interaction indicates that filamin-C predominantly interacts with the modules. These data suggest that filamin-C, a known component of striated muscle Z-lines, interacts with nebulette modules.  相似文献   

11.
The Xin actin-binding repeat–containing proteins Xin and XIRP2 are exclusively expressed in striated muscle cells, where they are believed to play an important role in development. In adult muscle, both proteins are concentrated at attachment sites of myofibrils to the membrane. In contrast, during development they are localized to immature myofibrils together with their binding partner, filamin C, indicating an involvement of both proteins in myofibril assembly. We identify the SH3 domains of nebulin and nebulette as novel ligands of proline-rich regions of Xin and XIRP2. Precise binding motifs are mapped and shown to bind both SH3 domains with micromolar affinity. Cocrystallization of the nebulette SH3 domain with the interacting XIRP2 peptide PPPTLPKPKLPKH reveals selective interactions that conform to class II SH3 domain–binding peptides. Bimolecular fluorescence complementation experiments in cultured muscle cells indicate a temporally restricted interaction of Xin-repeat proteins with nebulin/nebulette during early stages of myofibril development that is lost upon further maturation. In mature myofibrils, this interaction is limited to longitudinally oriented structures associated with myofibril development and remodeling. These data provide new insights into the role of Xin actin-binding repeat–containing proteins (together with their interaction partners) in myofibril assembly and after muscle damage.  相似文献   

12.
Members of the Pumilio (Pum) family of RNA-binding proteins act as translational repressors and are required for germ cell development and asymmetric division. We identified the chicken Pum1 and Pum2 genes and analyzed their expression patterns in various tissues. Comparative sequence analysis of the Pum1 and Pum2 proteins from the drosophila, chicken, mouse, and human revealed a high degree of evolutionary conservation in terms of the levels of homology of the peptide sequences and the structure of Pumilio homology domain (PUM-HD), C-terminal RNA-binding domain, with similar spacing between the adjacent Pum eight tandem repeats. In addition, phylogenetic patterns of pumilio family showed that Pum 1 and 2 of chicken are more closely related to those of mouse and human than other species and Pum1 is more conserved than Pum2. Using real-time RT-PCR, the expression levels of the Pum1 and Pum2 genes were found to be highest in hatched female gonads, and high-level expression of Pum2 was detected in 12-day and hatched gonads among the various chicken embryonic tissues tested. In adult tissues, the expression levels of Pum1 and Pum2 were expressed at higher levels in the testis and muscle than in any other tissue. The characteristics of the tissue-specific expression of Pum genes suggest that Pum1 and Pum2 have effects crucially in particular stage during development of chicken gonads depending on sexual maturation.  相似文献   

13.
Nebulin is an approximately 700 kDa filamentous protein in vertebrate skeletal muscle. It binds to the Z line and also binds side-by-side to the entire thin (actin) filament in a sarcomere. Nebulin is currently thought to be a molecular ruler regulating the length of the thin filament to 1 mum. The complete sequence of human skeletal muscle nebulin was determined by . Because of its large size, only fragmental sequence information has been available for nebulins other than human skeletal muscle. This paper describes for the first time the sequence of about one third (C terminal region) of chicken skeletal muscle nebulin. It was found that the fundamental structure of human nebulin, consisting of 35 amino acid repeats (modules) plus C terminal serine-rich and SH3 domains linked to the Z line are well conserved with chicken nebulin. Sequence identity ranged from 74 to 91%. There were super-repeats (seven modules), a first linker repeat, simple repeat and a second linker repeat in addition to the Z line binding region as in human nebulin. However, there were 2 fewer modules in the first linker repeat and 6 fewer in the simple repeat in chicken nebulin as compared to human nebulin. Two isoforms of chicken nebulin were sequenced indicating insertion of approximately 6 or 11 modules to a structure similar to that of human nebulin. Recombinant first linker repeats M51 approximately 56 were shown to bind to actin using the ELISA technique as well as human nebulin recombinants.  相似文献   

14.
Synaptobrevins 1 and 2 are small integral membrane proteins specific for synaptic vesicles in neurons. Two cosmid clones containing the human genes encoding synaptobrevins 1 and 2 (gene symbols SYB1 and SYB2, respectively) were isolated and characterized. The coding regions of the synaptobrevin genes are highly homologous to each other and are interrupted at identical positions by introns of different size and sequence. Each gene is organized into five exons whose boundaries correspond to those of the protein domains. Exon I contains part of the initiator methionine codon whereas exon II encodes the variable and immunogenic amino-terminal domain of the synaptobrevins. The third exon comprises the highly conserved central domain of the synaptobrevins, exon IV encodes most of the transmembrane region, and exon V contains the last residues of the transmembrane region and the small intravesicular carboxyl terminus. Comparisons of the synaptobrevin sequences in five species from Drosophila with man indicate a selective conservation of sequences adjacent to the synaptic vesicle surface, suggesting a function at the membrane-cystosol interface. The chromosomal localizations of the human and mouse SYB1 and SYB2 genes were determined using hybrid cell lines. SYB1 was localized to the short arm of human chromosome 12 and to mouse chromosome 6 whereas SYB2 was found on the distal portion of the short arm of human chromosome 17 and on mouse chromosome 11. A PstI restriction fragment length polymorphism was identified at the SYB2 locus.  相似文献   

15.
The actin cytoskeleton drives cell motility and is essential for neuronal development and function. LIM and SH3 protein 1 (LASP1) is a unique actin-binding protein that is expressed in a wide range of cells including neurons, but its roles in cellular motility and neuronal development are not well understood. We report that LASP1 is expressed in rat hippocampus early in development, and this expression is maintained through adulthood. High-resolution imaging reveals that LASP1 is selectively concentrated at the leading edge of lamellipodia in migrating cells and axonal growth cones. This local enrichment of LASP1 is dynamically associated with the protrusive activity of lamellipodia, depends on the barbed ends of actin filaments, and requires both the LIM domain and the nebulin repeats of LASP1. Knockdown of LASP1 in cultured rat hippocampal neurons results in a substantial reduction in axonal outgrowth and arborization. Finally, loss of the Drosophila homologue Lasp from a subset of commissural neurons in the developing ventral nerve cord produces defasciculated axon bundles that do not reach their targets. Together, our data support a novel role for LASP1 in actin-based lamellipodial protrusion and establish LASP1 as a positive regulator of both in vitro and in vivo axon development.  相似文献   

16.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

17.
Cartilage matrix protein (CMP) is a major component of the extracellular matrix of nonarticular cartilage. The structure and chromosomal location of the human gene encoding CMP was determined by molecular cloning analysis. We used a partial chicken CMP cDNA probe to isolate three overlapping human genomic clones. From one of these clones, a probe containing 2 human CMP exons was isolated and used to map the gene to chromosome 1p35 and to screen a human retina cDNA library. Two overlapping cDNA clones were isolated. The predicted protein sequence of 496 amino acids includes a 22-residue signal peptide and a 474-residue mature protein of Mr 51,344. The human CMP gene and polypeptide are strikingly similar to the chicken CMP gene and polypeptide. Human CMP is 79% identical to chicken CMP and contains two homologous domains separated by an epidermal growth factor-like domain. One potential N-glycosylation site is conserved between the two species. The human CMP gene spans 12 kilobase pairs with 8 exons and 7 introns which are similar in size to those of the chicken CMP gene. Both RNA splice junctions of intron G in the human and chicken CMP genes are nonconforming to the consensus splice sequences. This suggests that the CMP gene utilizes a new RNA splicing mechanism.  相似文献   

18.
The nebulin family of actin-binding proteins plays an essential role in cytoskeletal dynamics and actin filament stability. All of the family members are modular proteins with their key defining structural feature being the presence of the 35-residue nebulin modules. The family members now include nebulin, nebulette, N-RAP, LASP-1, and LIM-nebulette. Nebulin and nebulette are associated with the thin filament/Z-line junction of striated muscle. LASP-1 and LIM-nebulette are found within focal adhesions, and N-RAP is associated with muscle cellular junctions. Although much investigation has focused on the role of the interactions between nebulin modules and actin, each of these proteins contains other domains that are essential for their cellular targeting and functions. The serine-rich linker region of nebulette has previously been shown to serve just such a purpose by targeting the association of the nebulin modules to the cardiac Z-line in cultured cardiomyocytes. In this report, we analyze the targeting functions of the homologous regions of LASP-1 and LIM-nebulette in their incorporation into focal adhesions. We have found that the linker region of LASP-1 is indeed important for its cellular localization and that the shortened linker region of LIM-nebulette drives the association of nebulin modules to focal adhesions. This work was supported by grants from the National Institutes of Health-HLB and the National Council of the American Heart Association to C.L.M.  相似文献   

19.
Chromosome locations of the eight SOX family genes, SOX1, SOX2, SOX3, SOX5, SOX9, SOX10, SOX14 and SOX21, were determined in the chicken by fluorescence in situ hybridization. The SOX1 and SOX21 genes were localized to chicken chromosome 1q3.1-->q3.2, SOX5 to chromosome 1p1.6-->p1.4, SOX10 to chromosome 1p1.6, and SOX3 to chromosome 4p1.2-->p1.1. The SOX2 and SOX14 genes were shown to be linked to chromosome 9 using two-colored FISH and chromosome painting, and the SOX9 gene was assigned to a pair of microchromosomes. These results suggest that these SOX genes form at least three clusters on chicken chromosomes. The seven SOX genes, SOX1, SOX2, SOX3, SOX5, SOX10, SOX14 and SOX21 were localized to chromosome segments with homologies to human chromosomes, indicating that the chromosome locations of SOX family genes are highly conserved between chicken and human.  相似文献   

20.
Aberrant long noncoding RNAs (lncRNA) have been proved to be associated with the many types of malignant tumors (including hepatocellular carcinoma [HCC]). In this study, a lncRNAs and mRNAs microarray analysis was performed in three pairs of HCC patitents’ tumor. We found lncRNA LIM and SH3 protein 1 antisense (LASP1-AS) and its sense-cognate gene LIM and SH3 protein 1 (LASP1) were upregulated in HCC and both are correlated with poorer prognosis and lower survival of HCC patients. Meanwhile, the expression of LASP1-AS correlated positively with LASP1 expression in HCC tissues. LASP1-AS promoted the proliferation, migration, and invasion abilities of HCC in vitro and vivo by enhancing LASP1 expression. Our study explored lncRNA LASP1-AS as an oncogene in HCC and promoted proliferation and metastasis capabilities of HCC via increasing the expression of its sense-cognate gene LASP1. LncRNA LASP1-AS might be a potential valuable prognostic biomarker and potential therapeutic target of HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号