首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Colicin A and B immunity proteins (Cai and Cbi, respectively) are homologous integral membrane proteins that interact within the core of the lipid bilayer with hydrophobic transmembrane helices of the corresponding colicin channel. By using various approaches (exchange of hydrophilic loops between Cai and Cbi, construction of Cbi/Cai hybrids, production of Cai as two fragments), we studied the structure-function relationships of Cai and Cbi. The results revealed unexpectedly high structural constraints for the function of these proteins. The periplasmic loops of Cai and Cbi did not carry the determinants for colicin recognition although most of these loops were required for Cai function; the cytoplasmic loop of Cai was found to be Involved in topology and function of Cai. The immunity function did not seem to be confined to a particular region of the immunity proteins.  相似文献   

2.
3.
Apolipoprotein A-I: structure-function relationships   总被引:5,自引:0,他引:5  
The inverse relationship between high density lipoprotein (HDL) plasma levels and coronary heart disease has been attributed to the role that HDL and its major constituent, apolipoprotein A-I (apoA-I), play in reverse cholesterol transport (RCT). The efficiency of RCT depends on the specific ability of apoA-I to promote cellular cholesterol efflux, bind lipids, activate lecithin:cholesterol acyltransferase (LCAT), and form mature HDL that interact with specific receptors and lipid transfer proteins. From the intensive analysis of apoA-I secondary structure has emerged our current understanding of its different classes of amphipathic alpha-helices, which control lipid-binding specificity. The main challenge now is to define apoA-I tertiary structure in its lipid-free and lipid-bound forms. Two models are considered for discoidal lipoproteins formed by association of two apoA-I with phospholipids. In the first or picket fence model, each apoA-I wraps around the disc with antiparallel adjacent alpha-helices and with little intermolecular interactions. In the second or belt model, two antiparallel apoA-I are paired by their C-terminal alpha-helices, wrap around the lipoprotein, and are stabilized by multiple intermolecular interactions. While recent evidence supports the belt model, other models, including hybrid models, cannot be excluded. ApoA-I alpha-helices control lipid binding and association with varying levels of lipids. The N-terminal helix 44-65 and the C-terminal helix 210-241 are recognized as important for the initial association with lipids. In the central domain, helix 100-121 and, to a lesser extent, helix 122-143, are also very important for lipid binding and the formation of mature HDL, whereas helices between residues 144 and 186 contribute little. The LCAT activation domain has now been clearly assigned to helix 144-165 with secondary contribution by helix 166-186. The lower lipid binding affinity of the region 144-186 may be important to the activation mechanism allowing displacement of these apoA-I helices by LCAT and presentation of the lipid substrates. No specific sequence has been found that affects diffusional efflux to lipid-bound apoA-I. In contrast, the C-terminal helices, known to be important for lipid binding and maintenance of HDL in circulation, are also involved in the interaction of lipid-free apoA-I with macrophages and specific lipid efflux. While much progress has been made, other aspects of apoA-I structure-function relationships still need to be studied, particularly its lipoprotein topology and its interaction with other enzymes, lipid transfer proteins and receptors important for HDL metabolism.  相似文献   

4.
糖组学:破解生命信息的第3种途径   总被引:6,自引:0,他引:6  
糖组学是随着糖生物学而兴起的研究糖链的表达、调控和生理功能的科学。糖链由于结构的多样性和复杂性而成为细胞的信息分子,是生物体基因组信息的延续,因此糖组学研究是后基因组时代阐明基因功能的必由之路。糖组学的内容主要包括对糖链的结构研究和在细胞信号传递、细胞识别方面的功能分析,以及通过糖蛋白组建糖组学数据库,从而建立起一套从基因组蛋白组到糖组的研究体系,对糖链的生物学功能的认识将有助于基因组学和蛋白质组学的研究。  相似文献   

5.
6.
Interleukin-6: structure-function relationships.   总被引:15,自引:2,他引:15       下载免费PDF全文
Interleukin-6 (IL-6) is a multifunctional cytokine that plays a central role in host defense due to its wide range of immune and hematopoietic activities and its potent ability to induce the acute phase response. Overexpression of IL-6 has been implicated in the pathology of a number of diseases including multiple myeloma, rheumatoid arthritis, Castleman's disease, psoriasis, and post-menopausal osteoporosis. Hence, selective antagonists of IL-6 action may offer therapeutic benefits. IL-6 is a member of the family of cytokines that includes interleukin-11, leukemia inhibitory factor, oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor. Like the other members of this family, IL-6 induces growth or differentiation via a receptor-system that involves a specific receptor and the use of a shared signaling subunit, gp130. Identification of the regions of IL-6 that are involved in the interactions with the IL-6 receptor, and gp130 is an important first step in the rational manipulation of the effects of this cytokine for therapeutic benefit. In this review, we focus on the sites on IL-6 which interact with its low-affinity specific receptor, the IL-6 receptor, and the high-affinity converter gp130. A tentative model for the IL-6 hexameric receptor ligand complex is presented and discussed with respect to the mechanism of action of the other members of the IL-6 family of cytokines.  相似文献   

7.
Recent work has focused on obtaining a better understanding of the three-dimensional structural relationships between the alpha and beta subunits of the F1 moiety and the location of nucleotide binding domains within these subunits. Four types of approach are currently being pursued: X-ray crystallographic, chemical, molecular biological and biochemical. Here we briefly review some of the major conclusions of these studies, and point out some of the problems that must be resolved before an adequate model that relates structure to function in the ATP synthase molecule can be formulated.  相似文献   

8.
Protein tyrosine phosphatases: structure-function relationships   总被引:1,自引:0,他引:1  
Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer.  相似文献   

9.
Stereology applied to structure-function relationships in pharmacology   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
The influence of early life development on the swimming performance of the endangered sofie Chondrostoma toxostoma was examined to highlight trends in organism‐environment relationships. Sudden occurrences of change in integrated function were found and these were most decisive, in particular with respect to microhabitat use, between the larval and juvenile periods of development. Stabilization of relative growth, i.e . end of the remodelling process (metamorphosis), occurred well after all larval characteristics (remnants of finfold and rapid allometric growth) had disappeared and all juvenile structures had appeared (nasal septa and complete scale cover). The fact that stabilization of relative growth coincided with dramatic shifts in microhabitat use (organism needs) as well as in swimming capacity (organism skills) suggests a more 'decisive' type of change in organism‐to‐environment interaction than one purely of form, i.e . shift from nursery to adult habitat.  相似文献   

12.
13.
14.
The CCN family of proteins: structure-function relationships   总被引:1,自引:0,他引:1  
The CCN proteins are key signalling and regulatory molecules involved in many vital biological functions, including cell proliferation, angiogenesis, tumourigenesis and wound healing. How these proteins influence such a range of functions remains incompletely understood but is probably related to their discrete modular nature and a complex array of intra- and inter-molecular interactions with a variety of regulatory proteins and ligands. Although certain aspects of their biology can be attributed to the four individual modules that constitute the CCN proteins, recent results suggest that some of their biological functions require cooperation between modules. Indeed, the modular structure of CCN proteins provides important insight into their structure-function relationships.  相似文献   

15.
Glucansucrases: mechanism of action and structure-function relationships   总被引:12,自引:0,他引:12  
Glucansucrases are produced principally by Leuconostoc mesenteroides and oral Streptococcus species, but also by the lactic acid bacteria (Lactococci, Lactobacilli). They catalyse the synthesis of high molecular weight D-glucose polymers, named glucans, from sucrose. In the presence of efficient acceptors, they catalyse the synthesis of low molecular weight oligosaccharides. Glucosidic bond synthesis occurs without the mediation of nucleotide activated sugars and cofactors are not necessary. Glucansucrases have an industrial value because of the production of dextrans and oligosaccharides and a biological importance by their key role in the cariogenic process. They were identified more than 50 years ago. The first glucansucrase encoding gene was cloned more than 10 years ago. But the mechanism of their action remains incompletely understood. However, in order to synthesise oligosaccharides of biological interest or to develop vaccines against dental caries, elucidation of the factors determining the regiospecificity and the regioselectivity of glucansucrases is necessary. The cloning of glucansucrase encoding genes in addition to structure-function relationship studies have allowed the identification of important amino acid residues and have shown that glucansucrases are composed of two functional domains: a core region (ca. 1000 amino acids) involved in sucrose binding and splitting and a C-terminal domain (ca. 500 amino acids) composed of a series of tandem repeats involved in glucan binding. Enzymology studies have enabled different models for their action mechanism to be proposed. The use of secondary structure prediction has led to a clearer knowledge of structure-function relationships of glucansucrases. However, mainly due to the large size of these enzymes, data on the three-dimensional structure of glucansucrases (given by crystallography and modelling) remain necessary to clearly identify those features which determine function.  相似文献   

16.
17.
18.
In general, the disciplines of biomechanics, morphology, densitometry, biochemistry, cell biology and molecular biology have advanced independently of one another. In spite of this fragmentation, there have been incremental increases in our understanding of the organization, mechanical properties, growth, remodeling and repair of the tissues comprising the skeleton. As a practical application, this increased knowledge has greatly improved our capabilities for early diagnosis of bone loss and has proven similarly useful in determining the efficacy of interventions to prevent osteoporosis. This approach, however, has been much less successful in countering several other important musculoskeletal disorders, including arthritis. In the immediate future, a major emphasis will be placed on tissue regeneration (engineering) to restore lost mechanical function to a compromised skeleton. To accomplish this goal, it will be necessary to employ much more sophisticated approaches toward evaluating the structure-to-function relationships, ones which will include integration of the respective contributions of gene expression, cell number and activity, matrix composition and architecture to achieve adequate tissue function.  相似文献   

19.
Characterizing the functional phenotypes of neurons is essential for understanding how genotypes can be related to the neural basis of behaviour. Traditional classifications of neurons by single features (such as morphology or firing behaviour) are increasingly inadequate for reflecting functional phenotypes, as they do not integrate functions across different neuronal types. Here, we describe a set of rules for identifying and predicting functional phenotypes that combine morphology, intrinsic ion channel species and their distributions in dendrites, and functional properties. This more comprehensive neuronal classification should be an improvement on traditional classifications for relating genotype to functional phenotype.  相似文献   

20.
A structure-function study of the protein kinase C (PK-C) pseudosubstrate sequence (R19FARK-GALRQKNV31) has been undertaken. The role of specific residues was investigated using an alanine substitution scan. Arg-22 was the most important determinant in the inhibitor sequence, since substitution of this residue by alanine gave a 600-fold increase in the IC50 value to 81 +/- 9 microM. Substitutions of other basic residue also increased the IC50, 5-, 11- and 24-fold for the Ala-19, Ala-23 and Ala-27 substitutions, respectively. The importance of basic residues in determining the potency of the pseudosubstrate peptide reflects the requirements for these residues in peptide substrate phosphorylation. The residues Gly-24, Leu-26 and Gln-28 were also important for pseudosubstrate inhibitor potency. The large difference in the IC50 value for the [A22]PK-C(19-31) peptide makes it a valuable control in studies employing the pseudosubstrate peptide to explore functional roles of PK-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号