首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribozymes are a promising agent for the gene therapy of dominant negative genetic disorders by allele-specific mRNA suppression. To test allele-specific mRNA suppression in cells, we used fibroblasts from a patient with osteogenesis imperfecta (OI). These cells contain a mutation in one α1(I) collagen allele which both causes the skeletal disorder and generates a novel ribozyme cleavage site. In a preliminary in vitro assay, ribozymes cleaved mutant RNA substrate whereas normal substrate was left intact. For the studies in cell culture we generated cell lines stably expressing active (AR) and inactive (IR) ribozymes targeted to mutant α1(I) collagen mRNA. Quantitative competitive RT–PCR analyses of type I collagen mRNA, normalized to β-actin expression levels, revealed that the level of mutant α1(I) collagen mRNA was significantly decreased by ~50% in cells expressing AR. Normal α1(I) collagen mRNA showed no significant reduction when AR or IR was expressed from the pHβAPr-1-neo vector and a small (10–20%) but significant reduction when either ribozyme was expressed from the pCI.neo vector. In clonal lines derived from cells expressing AR the level of ribozyme expression correlated with the extent of reduction in the mutant:normal α1(I) mRNA ratio, ranging from 0.33 to 0.96. Stable expression of active ribozyme did not affect cell viability, as assessed by growth rates. Ribozyme cleavage of mutant mRNA results in a reduction in mutant type I collagen protein, as demonstrated by SDS–urea–PAGE. This is the first report of ribozymes causing specific suppression of an endogenous mutant mRNA in cells derived from a patient with a dominant negative genetic disorder.  相似文献   

2.
3.
Demineralized deciduous and permanent teeth from seven patients with six different types of osteogenesis imperfecta (OI) and from four unaffected controls were stained for type III collagen and for the N-terminal propeptide of type III procollagen using indirect immunofluorescence. Sillence types IA, IB and III OI were each represented by one patient. Two patients had type IVB and two had unclassifiable OI. After enzymatic treatment, the dentin matrix of one patient each with type IB OI, type IVB, and unclassifiable OI reacted with the specific antibodies against both type III collagen and the N-terminal propeptide. Positive staining was observed around the pathological canal-like structures and as delicate strands traversing the matrix. The similar patterns of immunofluorescence for both antigens in dentin in OI are suggestive of retention of the N-terminal propeptide in association with type III collagen identical to that in normal nonmineralized connective tissues. The abnormal presence of type III collagen in dentin in OI may be secondary to the aberrant structure of type I collagen. The failure of dentin matrix of all patients with OI to immunostain for type III collagen and the N-terminal propeptide may reflect heterogeneity or additional secondary changes in matrix macromolecule interactions.  相似文献   

4.
We have characterized a deletion of approximately 9 kilobases which spans from intron 33 to exon 48 of one pro-alpha 1 (III) collagen allele in a patient with Ehlers-Danlos syndrome type IV. The mutation results in the production of an in-frame species of mRNA which lacks the sequences corresponding to residues 595-1,008 of the triple-helical domain. Thus, half of the pro-alpha 1 (III) chains synthesized by the patient's fibroblasts are nearly 30% shorter than normal. The procollagen III molecules composed of either three normal length or three shortened chains are thermally stable and efficiently secreted. In contrast, the procollagen III molecules that contain one or two shortened chains are unstable and are not secreted. Failure to secrete unstable molecules and a residual functional role of the shortened but stable homotrimers may explain the somewhat milder phenotype of this individual compared with that of another Ehlers-Danlos type IV patient bearing a deletion of similar size in the amino-terminal portion of the alpha 1 (III) collagen chain.  相似文献   

5.
A method for detecting a wide variety of mutations within type I collagen has been developed and evaluated on a series of patients with osteogenesis imperfecta. RNA, extracted from the nuclear and cytoplasmic compartment of cultured fibroblasts from affected individuals, is hybridized with antisense single-stranded cDNA to the alpha 1(I) mRNA. The hybrid is digested with RNase A and T1 under varying degrees of stringency. The resistant RNA bands are separated by electrophoresis in agarose, transferred to nitrocellulose, and hybridized with antisense cRNA colinear with the protecting probe. This approach is capable of detecting previously defined mutations such as 252-base pair deletion and a 1-base pair mismatch within the alpha 1(I) mRNA. The method appears to be particularly useful in detecting abnormalities of RNA processing that behave as an insert or deletion within the mature mRNA. The procedure should be generally applicable for the identification and localization of any mutation within an entire gene if the gene is expressed as an RNA and a complete cDNA for the mRNA is available.  相似文献   

6.
Summary A 300 base pair deletion near the 3-end of the gene encoding Type II (cartilage) collagen has been implicated in the pathogenesis of perinatal lethal osteogenesis imperfecta. We have found similar deletions occurring at a high frequency in normal Asian Indian and West Indian populations generated by a length polymorphism just beyond the 3-end of the gene. We suggest that this polymorphism provides an alternative explanation of the original results.  相似文献   

7.
Osteogenesis imperfecta is normally caused by an autosomal dominant mutation in the type I collagen genes COL1A1 and COL1A2. The severity of osteogenesis imperfecta varies, ranging from perinatal lethality to a very mild phenotype. Although there have been many reports of COL1A1 and COL1A2 mutations, few cases have been reported in Chinese people. We report on five unrelated families and three sporadic cases. The mutations were detected by PCR and direct sequencing. Four mutations in COL1A1 and one in COL1A2 were found, among which three mutations were previously unreported. The mutation rates of G>C at base 128 in intron 31 of the COL1A1 gene and G>A at base 162 in intron 30 of the COL1A2 gene were higher than normal. The patients' clinical characteristics with the same mutation were variable even in the same family. We conclude that mutations in COL1A1 and COL1A2 also have an important role in osteogenesis imperfecta in the Chinese population. As the Han Chinese people account for a quarter of the world's population, these new data contribute to the type I collagen mutation map.  相似文献   

8.
Osteogenesis imperfecta (OI), commonly known as "brittle bone disease", is a dominant autosomal disorder characterized by bone fragility and abnormalities of connective tissue. Biochemical and molecular genetic studies have shown that the vast majority of affected individuals have mutations in either the COL1A1 or COL1A2 genes that encode the chains of type I procollagen. OI is associated with a wide spectrum of phenotypes varying from mild to severe and lethal conditions. The mild forms are usually caused by mutations which inactivate one allele of COL1A1 gene and result in a reduced amount of normal type I collagen, while the severe and lethal forms result from dominant negative mutations in COL1A1 or COL1A2 which produce structural defects in the collagen molecule. The most common mutations are substitutions of glycine residues, which are crucial to formation and function of the collagen triple helix, by larger amino acids. Although type I collagen is the major structural protein of both bone and skin, the mutations in type I collagen genes cause a bone disease. Some reports showed that the mutant collagen can be expressed differently in bone and in skin. Since most mutations identified in OI are dominant negative, the gene therapy requires a fundamentally different approach from that used for genetic-recessive disorders. The antisense therapy, by reducing the expression of mutant genes, is able to change a structural mutation into a null mutation, and thus convert severe forms of the disease into mild OI type I.  相似文献   

9.
10.
Studies on type I procollagen produced by skin fibroblasts cultured from twins with lethal type II of osteogenesis imperfecta (OI) showed that biosynthesis of collagen (measured by L-[5-(3)H]proline incorporation into proteins susceptible to the action of bacterial collagenase) was slightly increased as compared to the control healthy infant. SDS/PAGE showed that the fibroblasts synthesized and secreted only normal type I procollagen. Electrophoretic analysis of collagen chains and CNBr peptides showed the same pattern of electrophoretic migration as in the controls. The lack of posttranslational overmodification of the collagen molecule suggested a molecular defect near the amino terminus of the collagen helix. Digestion of OI type I collagen with trypsin at 30 degrees C for 5 min generated a shorter than normal alpha2 chain which melted at 36 degrees C. Direct sequencing of an asymmetric PCR product revealed a heterozygous single nucleotide change C-->G causing a substitution of histidine by aspartic acid in the alpha2 chain at position 92. Pericellular processing of type I procollagen by the twin's fibroblasts yielded a later appearance of the intermediate pC-alpha1(I) form as compared with control cells.  相似文献   

11.
12.
A proband with lethal osteogenesis imperfecta has been investigated for the causative defect at the levels of collagen protein, mRNA, and DNA. Analysis of type I collagen synthesized by the proband's fibroblasts showed excessive post-translational modification of alpha 1(I) chains along the entire length of the helix. Oververmodification of alpha chains could be prevented by incubation of the cells at 30 rather than 37 degrees C, and the thermal stability of the triple helix, as determined by protease digestion, was normal. RNase A cleavage of RNA:RNA hybrids formed between the proband's mRNA and antisense RNA derived from normal pro-alpha 1(I) chain cDNA clones was used to locate an abnormality to exon 43 of the proband's pro-alpha 1(I) collagen gene (COL1A1). The nucleotide sequence of the corresponding gene region showed, in one allele, the deletion of 9 base pairs, not present in either parent, within a repeating sequence of exon 43. The mutation causes the loss of one of three consecutive Gly-Ala-Pro triplets at positions 868-876, but does not otherwise disrupt the Gly-X-Y sequence. Procollagen processing in fibroblast cultures and susceptibility of the mutant collagen I to cleavage with vertebrate collagenase were normal, indicating that the slippage of collagen chains by one Gly-X-Y triplet does not abolish amino-propeptidase and collagenase cleavage sites. How the mutation produces the lethal osteogenesis imperfecta phenotype is not entirely clear; the data suggest that the interaction of alpha chains immediately prior to helix formation may be affected.  相似文献   

13.

Introduction:

Individuals with Osteogenesis Imperfecta (OI) type I often show muscular weakness. However, it is unclear whether muscular weakness is a consequence of physical inactivity or a result of the disease itself. The aim was to assess muscle function in youth with OI type I and evaluate physical activity (PA).

Methods:

Fourteen children with OI type I (mean age [SD]: 12.75 [4.62] years) were compared to 14 age- and gender-matched controls (mean age [SD]: 12.75 [4.59] years). Muscle force and power were determined through mechanography. PA and daily energy expenditure were measured with an accelerometer and a questionnaire.

Results:

Compared to controls, children with OI type I had lower muscle force and power. OI type I children were as active as their healthy counterparts.

Conclusions:

Children and adolescents with OI type I and their healthy counterparts did not reached daily recommendations of PA. Given their muscle function deficit, youth with OI type I would benefit to reach these recommendations to prevent precocious effect of aging on muscles.  相似文献   

14.
Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the 'slow' alpha (I)'- and alpha 2(I)'-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)'- and alpha 2(I)'-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)'-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)'- and alpha 2(I)'-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.  相似文献   

15.
We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI patients. In contrast to peptides, we found no correlations of DeltaTm with the identity of the substituting residue. Instead, we observed regular variations in DeltaTm with the substitution location in different triple helix regions. To relate the DeltaTm map to peptide-based stability predictions, we extracted the activation energy of local helix unfolding (DeltaG) from the reported peptide data. We constructed the DeltaG map and tested it by measuring the H-D exchange rate for glycine NH residues involved in interchain hydrogen bonds. Based on the DeltaTm and DeltaG maps, we delineated regional variations in the collagen triple helix stability. Two large, flexible regions deduced from the DeltaTm map aligned with the regions important for collagen fibril assembly and ligand binding. One of these regions also aligned with a lethal region for Gly substitutions in the alpha1(I) chain.  相似文献   

16.
Homozygous osteogenesis imperfecta unlinked to collagen I genes   总被引:4,自引:1,他引:3  
Summary In a consanguineous pedigree in which a severe type of osteogenesis imperfecta was segregating as an autosomal recessive trait, analysis of genetic markers for both collagen I structural loci COL1A1 and COL1A2 showed that the phenotype was unlinked to either locus.  相似文献   

17.
Broad boned lethal osteogenesis imperfecta is a severely crippling disease of unknown cause. By means of recombinant DNA technology a 300 base pair deletion in an alpha 1(I)-like collagen gene was detected in six patients and four complete parent-child groups including patients with this disease. One from each set of the patients'' clinically unaffected parents also carried the deletion, implying that affected patients were genetic compounds. The study suggests that prenatal diagnosis should be possible with 100% accuracy in subjects without the deletion and with 50% accuracy in those who possess it (who would be either heterozygous--normal, or affected with the disease).  相似文献   

18.
19.
The CNBr peptides of type I collagen from bone of a patient with lethal osteogenesis imperfecta and age-matched controls were isolated by molecular-sieve chromatography and their amino acid compositions were determined. No differences were found between the compositions of the peptides from the patient and those from the controls, except for an increase in the degree of hydroxylation of lysine in all peptides from the patient. Type I collagen CNBr peptides from chick-embryo skin [Barnes, Constable Morton & Kodicek (1971) Biochem. J. 125, 925--928] and guinea-pig scar tissue [Shuttleworth, Forrest & Jackson (1975) Biochim. Biophys. Acta 379, 207--216] also have an increased degree of hydroxylation of lysine with an otherwise normal amino acid composition, and it was believed that this could be an embryonic form of collagen. As a similar collagen was present in the bones of the patient studied, it seems possible that the same 'embryonic' collagen is synthesized during development, in repair process and also in genetic disorders of collagen metabolism.  相似文献   

20.
We characterized a de novo 4.5 kilobase pair deletion in the paternally derived alpha 2(I) collagen allele (COL1A2) from a patient with perinatal lethal osteogenesis imperfecta. The intron-to-intron deletion removed the seven exons which encode residues 586-765 of the triple helical domain of the chain. Type I procollagen molecules that contain the mutant pro-alpha 2(I) chain have a lower than normal thermal stability, undergo increased post-translational modification amino-terminal to the deletion junction, and are retained within the rough endoplasmic reticulum. The block to secretion appears to result from improper assembly of the triple helix, apparently a consequence of a disruption of charge-charge interactions between the shortened pro-alpha 2(I) chain and normal pro-alpha 1(I) chains. The lethal effect may be due to decreased secretion of normal collagen and secretion of a small amount of abnormal collagen that disrupts matrix formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号