首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When various autoclaved microbial cells suspensions (exogenous elicitors) were added to Catharanthus roseus cell cultures, its growth was inhibited but 5′-phosphodiesterase (PDase) production was stimulated. The greatest effect was with autoclaved Alteromonas macleodii: the dry cell concentration decreased from 13 to 10.9 mg/ml while PDase production increased from 0.022 to 0.235 U/ml. A combination of A. macleodii (as exogenous elicitor) and 0.1%(w/v) alginate oligomers (AO: acting as both endogenous elicitor and scavenger of active oxygen species) minimized the cell growth inhibition but enhanced PDase production (0.474 U/ml) about 20 times higher than the control (no addition). The method for the preparation of mixed alginate elicitors with high activities containing exogenous elicitor (autoclaved A. macleodii), endogenous elicitor (AO), and trans-4,5-dihydroxy-2-cyclopenten-1-one was developed. The mixed alginate elicitors significantly promoted PDase production (2.67 U/ml) by C. roseus, and the productivity was increased 120-fold compared to the control without cell growth inhibition.  相似文献   

2.
 The effects of alginate on the physiological activities of plant cells were studied. Addition of alginate oligomer (AO) to the suspension culture of Catharanthus roseus L. or Wasabia japonica cells promoted the production of antibiotic enzymes such as 5′-phosphodiesterase or chitinase respectively. Ajmalicine (a secondary metabolite) production by C. roseus CP3 cells was also promoted when AO was added to the suspension culture. On the basis of these results, we assumed that alginate is an elicitor-like substance. We therefore compared the effect of AO on C. roseus L. and W. japonica cells with those of chitosan oligomer (CO) and oligo-galacturonic acid (OGA), which are well known as an exogenous elicitor and endogenous elicitor respectively. The effects of various concentrations of AO, OGA, and CO on the physiological activities, membrane permeability and protoplast formation of C. roseus L. or W. japonica cells were investigated. AO and OGA showed similar physiological effects, which were quite different from those of CO. Since alginate appeared to have similar effects to galacturonic acid, we concluded that alginate acts as an endogenous elicitor. Both alginate and galacturonic acid are uronic acids, and we considered their structural similarity. The effects of esterification of the carboxylic groups of alginate by propylene oxide were also studied. The greater the degree of esterification, the less the secretion of 5′-phosphodiesterase. Hence we assumed that carboxylic groups have an important role in the initiation of the elicitation reaction in plant cells, as shown in the case of galacturonic acid. Received: 18 January 1999 / Received revision: 2 April 1999 / Accepted: 1 May 1999  相似文献   

3.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):384-388
The fatty-acid composition of C. roseus and N. tabacum cell suspension cultures was unaffected by subculture on Wood and Braun, Murashige and Skoog, or Gamborg B5C media. However, placing the cultures — which were normally grown at 25° C — at 15° C reduced growth but resulted in enhanced formation of oleic and linolenic acids in C. roseus cultures and increased levels of linoleic and linolenic acids in cultures of G. max and N. tabacum, respectively. The incorporation of [14C]acetate into [14C]linoleic acid was more rapid in N. tabacum cells than in G. max cells, but was very poor in C. roseus where the [14C] label was distributed mainly between palmitic and oleic acids.  相似文献   

4.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):389-395
Cell suspension cultures of Catharanthus roseus G. Don, Glycine max (L.) Merr. and Nicotiana tabacum L. were incubated with [14C]acetate, [14C]oleic acid and [14C]linoleic acid at five different temperatures ranging from 15 to 35° C. When the incubation temperature was increased, [14C]acetate was incorporated preferentially into [14C]palmitate, with a concomitant drop in [14C]oleate formation. Between 15 and 20° C, [14C]oleic acid accumulated in C. roseus cells. In all cultures, optimum desaturation of [14C]oleic acid to [14C]linoleic acid occurred between 20 and 25° C, and in G. max this was also the optimal range for desaturation of [14C]linoleic acid to [14C]linolenic acid. Elongation of [14C]palmitic acid was inhibited when cultures grown at 15° C for 25 h were subsequently incubated with [14C]acetate at 25° C. [14C]oleic acid accumulated in G. max and C. roseus cultures grown at 35° C for 25 h and subsequently incubated at 25° C. Desaturation of [14C]oleic acid increased up to 25° C, but then decreased or leveled off depending on the cell line and on the temperature prior to incubation.  相似文献   

5.
During growth, Catharanthus roseus cells exhibit an acidification of the culture medium that may be controlled by Ca2+. With a view to enhance the productivity of alkaloids by plant cells, the effect of extracellular pH modifications on the excretion processes has been investigated. Ca2+ dependent proton pumping leads to the release of various lipophilic amine-like compounds (benzylamine, methylamine, nicotine) initially accumulated by the cells, but also facilitates the excretion of endogenous ajmalicine. Once released in the medium, these compounds are however taken up again by the cells, probably as the charged form. For the alkaloid contained in C. roseus some evidence suggests that the diffusible form comes from the cytosolic compartment and not from the storage vacuoles. This appears to be a major production limitation to the use of pH gradients in order to favour alkaloid excretion.  相似文献   

6.
W. Noé  J. Berlin 《Planta》1985,166(4):500-504
Tryptophan decarboxylase (EC 4.2.1.27) is synthesized de-novo by Catharanthus roseus cells shortly after the cells have been transferred into culture medium in which monoterpenoid indole alkaloids are formed. The enzyme production, monitored by in-vivo labelling with [35S]methionine and immunoprecipitation, precedes the apparent maximal enzyme activity by 10–12 h. From the time course of the descending enzyme activity after induction, a half-life of 21 h for tryptophan decarboxylase in C. roseus cell suspensions is calculated. A comparison of the polyadenylated-RNA preparations from C. roseus cells indicates that mRNA activity for tryptophan decarboxylase is only detected in cells grown in the production medium. The importance of tryptophan decarboxylase induction with respect to the accumulation of th corresponding alkaloids is discussed.Abbreviation TDC tryptophan decarboxylase  相似文献   

7.
Summary Charasomes, complex membrane structures, were found along the longitudinal walls of internodal and lateral branch cells ofChara corallina andC. braunii, but not along their transverse walls or in other cell types. Charasome-complexes were larger and more numerous in the lateral branch cells than in internodal cells. InC. corallina, a dioecious species, especially large elaboration of charasome material occurs in the lateral branch cells of the female plant, sometimes reaching a cross-sectional width which is as great as that of the adjacent cell wall. Chara internodes transport hydroxyl (OH) out of the cell and bicarbonate (HCO3 ) into the cell. Spatial distribution of charasomes along the cell was examined with respect to these transport phenomena, which occur at specific identifiable regions along the cell. Charasome-complexes were always found in regions in which HCO3 transport occurs but were often fewer, reduced in size or absent in areas of OH efflux.Nitella flexilis exhibited similar patterns of OH and HCO3 transport along the cell; however, there was a complete absence of charasomes. Ultrastructural examinations onNitella translucens indicated that charasomes were also absent in this species. The observation that charasomes are present in both transport regions ofChara but are totally lacking in the twoNitella spp. indicates that the charasome-complex is not involved in transport of either substance. Other possible functions for the charasomes, including a role in osmoregulation, are discussed.Charasome substructure is the same in bothChara species, consisting of a mass of short (50 nm average length) anastomosing tubules (30 nm average diameter) derived from the plasmalemma. The interior of the tubules is open to the cytoplasm while the area surrounding the tubules is ultimately open to the wall and thus can be considered to be wall space. Charasomes are quite variable in size and shape, but are roughly globular, with the bulk of the structure projecting into the cell cytoplasm. Tubular components of the charasome were sometimes seen to extend into the microfibrillar wall matrix. A three dimensional model of the charasome-complex presented details the great complexity of this membrane system.  相似文献   

8.
Catharanthine production in Catharanthus roseussuspension cell cultures was increased by about 4-fold to 28 mg l–1, 23 mg l–1and 24 mg l–1by adding sodium alginate, mannitol or polyvinyl pyrrolidone, respectively. Sodium alginate and polyvinyl pyrrolidone also enhanced ajmalicine production to 28 mg l–1and 31 mg l–1, respectively. Up to 55–70% of the total alkaloids were released into the medium. These treatments could stimulate higher alkaloid production in C. roseuscell cultures than NaCl and KCl stresses. The possible mechanisms for these treatment effects are discussed.  相似文献   

9.
Summary The induction of metabolic changes in suspension cultured cells of Catharanthus roseus upon elicitation has been investigated. Addition of a yeast glucan preparation to the growth medium resulted in induction of phenylalanine ammonia lyase. Phosphate uptake and metabolism of elicited cells was followed by 31P nuclear magnetic resonance. The uptake rate of Pi from the medium by oxygenated cells of C. roseus was reduced immediately after elicitation. Despite this reduced Pi uptake elicited cells had significantly increased amounts of ATP (twofold increase within 6 h). Cytoplasmic levels of Pi, phosphomonoesters, and Uridine Diphasphate glucose (UDP-Glc) were unaffected by eliciation. Furthermore, the cytoplasmic and vacuolar pH remained constant after addition of elicitor.  相似文献   

10.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

11.
Summary An experimental system, in which gases of known composition were passed through flasks, was used to systematically study the effects of oxygen and carbon dioxide on plant cell growth. As expected, oxygen limiting conditions resulted in suppressed growth of Catharanthus roseus cultures. Oxygen limitations did not alter the amount of cell mass produced per gram of sugar consumed which suggests that the production of fermentative metabolites was limited. Varying levels of carbon dioxide were observed to have no effect on the growth rates of either C. roseus or Daucus carota cultures. The amount of C. roseus cell mass generated per gram of sugar consumed appeared to be slightly increased at higher carbon dioxide levels.  相似文献   

12.
Summary This study investigates by electron microscopy the transformational process of the endosomal compartment of the Drosophila nephrocyte, the garland cell, which occurs during endocytotic processing of internalized material. The endosomal compartment of the garland cell consists of a prominent tubular/vacuolar complex in the cortical cytoplasm. When internalization of coated pits is blocked at 29°C using the endocytosis mutant, shibire ts, the tubules gradually disappear after 7 min at 29°C. By 12 min at 29°C, the vauoles also disappear. Thus, the endosomal compartment appears to constantly undergo a transformational process that necessitates continuous replenishment by coated vesicles. The data suggest that the tubular component of the endosomal compartment gradually transforms into vacuoles by the expansion of the tubular membrane. The vacuoles then transform by invaginating into themselves, creating flattened cisternae. The electron-lucent substance in the lumina of the vacuoles appears to be extruded into the cytoplasm through the invaginating membrane. No shuttle vehicles such as vesicles or tubules could be identified that might have been involved in the transporting of endocytosed materials and membrane from the endosomal compartment to lysosomes or back to the plasma membrane.  相似文献   

13.
Summary Nuclear magnetic resonance (NMR) spectroscopy provides a unique modality for the study of tissue-cultured plant cells. One of its major attractions is that it allows noninvasive studies of plant material. In addition, it can provide insight into the pH in the vacuole and cytoplasm, and into the compartmentalization of certain metabolites. In this review we show how phosphorus-31 NMR is used to study intracellular pH, phosphate uptake and storage, and energy metabolism in suspension cells of Catharanthus roseus. In addition, multinuclear NMR studies of the uptake of ammonium and the gradients of K+ over the membrane are discussed as well. The use of two-dimensional NMR for the study of whole cell extracts is also described. Finally, we show how nitrogen-14 and nitrogen-15 NMR are used to obtain information about the assimilation of inorganic sources in developing carrot somatic embryos. These NMR studies provide a unique insight into the metabolism of tissue-cultured plant cells.  相似文献   

14.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

15.
Liscombe DK  O'Connor SE 《Phytochemistry》2011,72(16):1969-1977
The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by the Madagascar periwinkle (Catharanthus roseus). Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to either improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. A VIGS method was developed herein to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro.  相似文献   

16.
Cytosolic Ca2+ and jasmonate mediate signals that induce defense responses in plants. In this study, the interaction between Ca2+ and methyl jasmonate (MJ) in modulating defense responses was investigated by monitoring ajmalicine production in Catharanthus roseus suspension cultures. C. roseus suspensions were treated with nine combinations of CaCl2 (3, 23, and 43 mM) and MJ (0, 10, and 100 μM) on day 6 of growth. Increased Ca2+ influx through the addition of extracellular CaCl2 suppressed ajmalicine production in MJ-induced cultures. The highest ajmalicine production (4.75 mg/l) was observed when cells were treated with a low level of calcium (3 mM) combined with a high level of MJ (100 μM). In the presence of 3 mM CaCl2 in the medium, the addition of Ca2+ chelator EGTA (1, 2.5, and 5 mM) or Ca2+ channel blocker verapamil (1, 10, and 50 μM) to MJ-induced (100 μM) cultures on day 6 also inhibited ajmalicine production at higher levels of the Ca2+ inhibitors. Hence, ajmalicine production in MJ-induced C. roseus cultures depended on the intracellular Ca2+ concentration and a low extracellular Ca2+ concentration (3 mM) enhanced MJ-induced ajmalicine production.  相似文献   

17.
M. Kimoto  H. Tsuji  T. Ogawa 《Amino acids》1994,6(3):273-282
Summary The metabolic significance ofN G ,N G -dimethyl-l-arginine (DMA) as a precursor of endogenous dimethylamine (DMN) in rats was examined in connection with the wide distribution and active operation of dimethylargininase (EC3.5.3.18) in rat tissues (Kimoto et al., 1993). When [methyl-14C]DMA was administered intraperitoneally to rats, the radioactive DMN was detected in various tissues as a major radioactive metabolite one hour after injection, and about 65% of the radioactivity administered was recovered in the first 12-h urine as DMN. In the case of the [14C] DMN-injected rats, almost all the radioactivity was excreted in the 12-h urine as DMN, except for a negligible amount of radioactivity found in urea. The time-dependent decrease in the specific radioactivity of DMA and DMN in urine showed that dimethylargininase was significantly involved in thein vivo formation of DMN by the hydrolytic cleavage of DMA released from methylated proteins and that DMA is a dominant precursor of endogenous DMN in rats.  相似文献   

18.
Treatment of Catharanthus roseus hairy roots with antagonists, like verapamil and CdCl2, that block the Ca2+ flux across the plasma membrane enhanced the total alkaloid content by 25% and their secretion 10 times. The specific Ca2+ chelator, EGTA, stimulated 90% of the total alkaloid secretion. Treatment with inhibitors of intracellular Ca2+ movement, like TMB-8 and trapsigargin, enhanced the total alkaloid content by 74% and their secretion into the culture media by 4- to 6-fold. The results suggest that an inhibition of external and internal Ca2+ fluxes induces an increase in the indole alkaloid accumulation and secretion in C. roseus hairy roots.  相似文献   

19.
Protoplasts enzymatically isolated from cell line of Catharanthus roseus G. Don crown gall, were cultured at high density (105 P ml-1) in modified B5 liquid medium (Gamborg et al. 1976). In the absence of growth regulators C. roseus protoplasts were able to regenerate a cell-wall, divide and, subsequently, yield very numerous clones in the absence of growth regulators. After two weeks, the cultures were greatly diluted in order to obtain clones of single-cell origin. Most of the clones individually transferred onto solid medium can proliferate indefinitely, without growth regulators. Among analyzed clones, 90% were nopaline positive. Their ajmalicine and serpentine content was compared with that of the parental crown gall line, and was found to be low. The CR10 protoplasts were very easy to grow, they were an interesting model for the development of pure tumorous lines. Moreover, we found that the tumorous protoplasts were useful for cell fusion experiments or for the delicate culture of tree protoplasts.Abbreviations B5 Gamborg et al. (1976) medium - 2,4-d 2,4-dichlorophenoxyacetic acid - Kin Kinetin - NAA naphthalene acetic acid - BA N6 (benzyl) adenine  相似文献   

20.
The biochemistry of cell-wall regeneration in protoplasts obtained from Vinca rosea L. (Catharanthus roseus (L.) G. Don) cells grown in suspension culture by isolating the regenerated wall and the extracellular polysaccharides of protoplasts cultured for various periods, and investigating their composition. Gas-liquid chromatography and tracer studies with D-[U-14C]glucose showed that the sugar composition of the extracellular polysaccharides was similar to that of the original cell culture, consisting mainly of polyuronide and 3,6-linked arabinogalactan. the regenerated cell wall was composed of non-cellulosic glucans having 1,3- and 1,4-linkages, while its content in pectic and hemicellulosic components was very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号