首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dvorák J  McGuire PE 《Genetics》1981,97(2):391-414
Wheat cultivar Chinese Spring (Triticum aestivum L. em. Thell.) was crossed with cultivars Hope, Cheyenne and Timstein. In all three hybrids, the frequencies of pollen mother cells (PMCs) with univalents at metaphase I (MI) were higher than those in the parental cultivars. No multivalents were observed in the hybrids, indicating that the cultivars do not differ by translocations. Thirty-one Chinese Spring telosomic lines were then crossed with substitution lines in which single chromosomes of the three cultivars were substituted for their Chinese Spring homologues. The telosomic lines were also crossed with Chinese Spring. Data were collected on the frequencies (% of PMCs) of pairing of the telesomes with their homologues at MI and the regularity of pairing of the remaining 20 pairs of Chinese Spring chromosomes in the monotelodisomics obtained from these crosses. The reduced MI pairing in the intercultivar hybrids was caused primarily by chromosome differentiation, rather than by specific genes. Because the differentiation involved a large part of the chromosome complement in each hybrid, it was concluded that it could not be caused by structural changes such as inversions or translocations. In each case, the differentiation appeared to be unevenly distributed among the three wheat genomes. It is proposed that the same kind of differentiation, although of greater magnitude, differentiates homoeologous chromosomes and is responsible, together with structural differentiation, for poor chromosome pairing in interspecific hybrids.  相似文献   

2.
Dvorák J  Chen KC 《Genetics》1984,106(2):325-333
Metaphase I (MI) pairing of homologous chromosomes in wheat intercultivar hybrids (heterohomologous chromosomes) is usually reduced relative to that within the inbred parental cultivars (euhomologous chromosomes). It was proposed elsewhere that this phenomenon is caused by polymorphism in nucleotide sequences (nonstructural chromosome variation) among wheat cultivars. The distribution of this polymorphism along chromosome arm 6Bp (=6BS) of cultivars Chinese Spring and Cheyenne was investigated. A population of potentially recombinant chromosomes derived from crossing over between telosome 6Bp of Chinese Spring and Cheyenne chromosome 6B was developed in the isogenic background of Chinese Spring. The approximate length of the Chinese Spring segment present in each of these chromosomes was assessed by determining for each chromosome the interval in which crossing over occurred (utilizing the rRNA gene region, a distal C-band and the gliadin gene region as markers). The MI pairing frequencies of these chromosomes (only the complete chromosomes were used) with the normal Chinese Spring telosome 6Bp were determined. These were directly proportional to the length of the euhomologous segment. The longer the incorporated euhomologous segment the better was the MI pairing. This provided evidence that the heterohomologous chromosomes are differentiated from each other in numerous sites distributed throughout the arm.—The comparison of the physical map of arm 6Bp with the linkage map showed a remarkable distortion of the linkage map; no crossing over was detected in the proximal 68% of the arm. A population of 49 recombinant chromosomes was assayed for recombination within the rRNA gene region, but none was detected. No new length variants of the nontranscribed spacer separating the 18S and 26S rRNA genes were detected either.  相似文献   

3.
Kota RS  McGuire PE  Dvorák J 《Genetics》1986,114(2):579-592
Previous work has shown that chromosome pairing at metaphase I (MI) of wheat homologous chromosomes from different inbred lines (heterohomologous chromosomes) is reduced relative to that between homologous chromosomes within an inbred line (euhomologous chromosomes). In order to determine if a potential for this phenomenon exists in diploid species closely related to the wheat B genome, MI chromosome pairing was investigated between euhomologous and heterohomologous 6Be (=6Se) chromosomes, each from a different population of Aegilops longissima Schweinf. et Muschl. (2n = 2x = 14) substituted for chromosome 6B of Chinese Spring wheat (Triticum aestivum L., 2n = 6x = 42). Euhomologous and heterohomologous monotelodisomics, i.e., plants with one complete chromosome 6Be and a telosome of either 6Bep or 6Beq, were constructed in the isogenic background of Chinese Spring. Pairing at MI of the Ae. longissima chromosomes was reduced in heterohomologous monotelodisomics compared to that in the corresponding euhomologous monotelodisomics. The remaining 20 pairs of Chinese Spring chromosomes paired equally well in the euhomologous and heterohomologous monotelodisomics. Thus, the cause of the reduced pairing must reside specifically in the Ae. longissima heterohomologues. In the hybrids between the Ae. longissima lines that contributed the substituted chromosomes, pairing between the heterohomologous chromosomes was normal and did not differ from that of the euhomologous chromosomes. These data provide evidence that a potential for reduced pairing between the heterohomologues is present in the diploid species, but is expressed only in the polyploid wheat genetic background. The reduction in heterohomologous chromosome pairing was greater in the p arm than in the q arm, exactly as in chromosome 6B of wheat. It is concluded that the reduced pairing between Ae. longissima heterohomologues has little to do with constitutive heterochromatin. The value of chromosome pairing as an unequivocal means of determining the origin of genomes in polyploid plants is questioned.  相似文献   

4.
Heterochromatin distribution and structural differentiation of somatic chromosomes of five common wheat cultivars — Chinese Spring, Wichita, Cheyenne, Timstein, and Hope — were studied by an acetocarmine/N-banding technique. Detailed morphological observations on acetocarmine stained somatic chromosomes of Chinese Spring were made on all A genome chromosomes (except 1A), all B genome chromosomes, and chromosomes 1D, 2D, and 7D. N-banding patterns of chromosomes 2A, 3A, 5A, 6A, 1D, 2D, and 7D were described for the first time. Substitution lines of 21 individual chromosomes each of Cheyenne, Timstein, and Hope in Chinese Spring were analyzed by N-banding. A high frequency of N-band polymorphism was observed, especially for most of the B genome chromosomes. Chromosomes 3A, 5A, 2D, and 7D showed a constant banding pattern. Three cases of doubtful substitutions, Hope 2A, 2B, and Timstein 7A, and several cases of incomplete and chromosomally modified substitutions were observed. The reduced level of chromosome pairing that is often observed in intercultivar hybrids of wheat may be due to heterochromatic differentiation, genic and structural heterozygosity, or hybrid dysgenesis.  相似文献   

5.
杨艳萍  陈佩度 《遗传》2009,31(3):290-296
通过胚拯救, 成功获得鹅观草Roegneria kamoji (2n=6x=42, SSHHYY)和普通小麦中国春Triticum aesti-vum (2n=6x=42, AABBDD)的正反交属间杂种F1, 并对这些杂种F1及其BC1的形态学、减数分裂配对行为、育性和赤霉病抗性进行研究。结果表明, (鹅观草×中国春)F1和(中国春×鹅观草)F1的形态介于双亲之间。杂种F1花粉母细胞减数分裂中期I染色体构型分别为40.33I + 0.78II + 0.03III和40.40I + 0.79II 。杂种F1高度雄性不育, 用中国春花粉与其回交可获得BC1代种子。(鹅观草×中国春) F1×中国春BC1植株的染色体数目主要分布在55~63之间, 单价体较多, 植株高度不育; (中国春×鹅观草)F1×中国春BC1植株染色体数目也主要分布在55~63之间, 但其中部分植株拥有整套小麦染色体且能正常配对、分离, 可形成部分可育花粉粒, 能收到少量自交结实种子。在 (鹅观草×中国春)F1中有1株穗型趋向中国春, 其染色体数目为2n=63, 经染色体分子原位杂交(GISH)检测, 含有42条小麦染色体和21条鹅观草染色体。该杂种F1在减数分裂中期I平均每个花粉母细胞有26.40I+18.30II, 但植株高度雄性不育, 用中国春花粉回交能收到BC1种子。(鹅观草×中国春) F1 (2n=63)×中国春BC1的染色体数目主要分布在40~59之间, 其中的外源染色体已经逐渐减少, 虽然该BC1的穗型已接近中国春, 但仍然高度不育。赤霉病抗性鉴定结果显示, 所有杂种F1及大部分BC1对赤霉病均表现出较好的抗性。  相似文献   

6.
The endosperm starch of the wheat grain is composed of amylose and amylopectin. Genetic manipulation of the ratio of amylose to amylopectin or the amylose content could bring about improved texture and quality of wheat flour. The chromosomal locations of genes affecting amylose content were investigated using a monosomic series of Chinese Spring (CS) and a set of Cheyenne (CNN) chromosome substitution lines in the CS genetic background. Trials over three seasons revealed that a decrease in amylose content occurred in monosomic 4A and an increase in monosomic 7B. Allelic variation between CS and CNN was suggested for the genes on chromosomes 4A and 7B. To examine the effects of three Waxy (Wx) genes which encode a granule-bound starch synthase (Wx protein), the Wx proteins from CS monosomics of interest were analyzed using SDS-PAGE. The amount of the Wx protein coded by the Wx-B1 gene on chromosome arm 4AL was reduced in monosomic 4A, and thus accounted for its decreased amylose content. The amounts of two other Wx proteins coded by the Wx-A1 and Wx-D1 genes on chromosome arms 7AS and 7DS, respectively, showed low levels of protein in the monosomics but no effect on amylose content. The effect of chromosome 7B on the level of amylose suggested the presence of a regulator gene which suppresses the activities of the Wx genes.  相似文献   

7.
Two wheat (Triticum aestivum L.) varieties, Cheyenne (Ch, winter wheat with excellent frost tolerance) and Chinese Spring (CS, spring wheat with weak frost tolerance), and chromosome substitution lines (CS/Ch 5A, CS/Ch 5D, CS/Ch 7A) created from Cheyenne and Chinese Spring were used to study the effect of chromosome substitutions on the membrane lipid composition in the leaves and crowns before and after cold hardening. The percentage of fatty acid unsaturation in phosphatidylethanolamine was greater in the crown of hardened Cheyenne than in Chinese Spring. The value of CS/Ch 5A was similar to Cheyenne and that of CS/Ch 5D to Chinese Spring, while the value of CS/Ch 7A was in between those of Cheyenne and Chinese Spring. A smaller difference was found between the unsaturation level in the phosphatidylcholine from Cheyenne and Chinese Spring after hardening, while the value obtained for the substitution line CS/Ch 7A was similar to Cheyenne. The percentage decrease in thetrans3-hexadecenoic acid content was found to be correlated with the frost tolerance of the wheat genotypes.  相似文献   

8.
杨艳萍  陈佩度 《遗传》2009,31(3):290-296
通过胚拯救, 成功获得鹅观草Roegneria kamoji (2n=6x=42, SSHHYY)和普通小麦中国春Triticum aesti-vum (2n=6x=42, AABBDD)的正反交属间杂种F1, 并对这些杂种F1及其BC1的形态学、减数分裂配对行为、育性和赤霉病抗性进行研究。结果表明, (鹅观草×中国春)F1和(中国春×鹅观草)F1的形态介于双亲之间。杂种F1花粉母细胞减数分裂中期I染色体构型分别为40.33I + 0.78II + 0.03III和40.40I + 0.79II 。杂种F1高度雄性不育, 用中国春花粉与其回交可获得BC1代种子。(鹅观草×中国春) F1×中国春BC1植株的染色体数目主要分布在55~63之间, 单价体较多, 植株高度不育; (中国春×鹅观草)F1×中国春BC1植株染色体数目也主要分布在55~63之间, 但其中部分植株拥有整套小麦染色体且能正常配对、分离, 可形成部分可育花粉粒, 能收到少量自交结实种子。在 (鹅观草×中国春)F1中有1株穗型趋向中国春, 其染色体数目为2n=63, 经染色体分子原位杂交(GISH)检测, 含有42条小麦染色体和21条鹅观草染色体。该杂种F1在减数分裂中期I平均每个花粉母细胞有26.40I+18.30II, 但植株高度雄性不育, 用中国春花粉回交能收到BC1种子。(鹅观草×中国春) F1 (2n=63)×中国春BC1的染色体数目主要分布在40~59之间, 其中的外源染色体已经逐渐减少, 虽然该BC1的穗型已接近中国春, 但仍然高度不育。赤霉病抗性鉴定结果显示, 所有杂种F1及大部分BC1对赤霉病均表现出较好的抗性。  相似文献   

9.
Low-temperature (LT) induced genes of the Wcs120 family in wheat (Triticum aestivum) were mapped to specific chromosome arms using Western and Southern blot analysis on the ditelocentric series in the cultivar Chinese Spring (CS). Identified genes were located on the long arms of the homoeologous group 6 chromosomes of all 3 genomes (A, B, and D) of hexaploid wheat. Related species carrying either the A, D, or AB genomes were also examined using Southern and Western analysis with the Wcs120 probe and the WCS120 antibody. All closely related species carrying one or more of the genomes of hexaploid wheat produced a 50 kDa protein that was identified by the antibody, and a Wcs120 homoeologue was detected by Southern analysis in all species. In the absence of chromosome arm 6DL in hexaploid CS wheat no 50 kDa protein was produced and the high-intensity Wcs120 band was missing, indicating 6DL as the location of Wcs120 but suggesting silencing of the Wcs120 homoeologue in the A genome. Levels of proteins that cross-reacted with the Wcs120 antibody and degrees of cold tolerance were also investigated in the Chinese Spring/Cheyenne (CS/CNN) chromosome substitution series. CNN chromosome 5A increased the cold tolerance of CS wheat. Densitometry scanning of Western blots to determine protein levels showed that the group 5 chromosome 5A had a regulatory effect on the expression of the Wcs120 gene family located on the group 6 chromosomes of all three hexaploid wheat genomes.  相似文献   

10.
Previous studies with chromosome substitution and recombinant inbred chromosome lines identified that chromosome 3A of wheat cv. Wichita contains alleles that influence grain yield, yield components and agronomic performance traits relative to alleles on chromosome 3A of Cheyenne, a cultivar believed to be the founder parent of many Nebraska developed cultivars. This study was carried out to examine the genetic similarity among wheat cultivars based on the variation in chromosome 3A. Forty-eight cultivars, two promising lines and four substitution lines (in duplicate) were included in the study. Thirty-six chromosome 3A-specific and 12 group-3 barley simple sequence repeat (SSR) primer pairs were used. A total of 106 polymorphic bands were scored. Transferability of barley microsatellite markers to wheat was 73%. The coefficient of genetic distance (D) among the genotypes ranged from 0.40 to 0.91 and averaged D=0.66. Cluster analysis by the unweighted pair-group method with arithmetic averages showed one large and one small cluster with eight minor clusters in the large cluster. Several known pedigree relationships largely corresponded with the results of SSR clusters and principal coordinate analysis. Cluster analysis was also carried out by using 22 alleles that separate Wichita 3A from Cheyenne 3A, and three clusters were identified (a small cluster related to Cheyenne of mainly western Nebraska wheat cultivars; a larger, intermediate cluster with many modern Nebraska wheat cultivars; a large cluster related to Wichita with many modern high-yielding or Kansas wheat cultivars). Using three SSR markers that identify known agronomically important quantitative trait loci (QTL) regions, we again separated the cultivars into three main clusters that were related to Cheyenne or Wichita, or had a different 3A lineage. These results suggest that SSR markers linked to agronomically important QTLs are a valuable asset for estimating both genetic similarity for chromosome 3A and how the chromosome has been used in cultivar improvement.  相似文献   

11.
Sixteen near-isogenic lines (NILs) carrying a marker gene were produced by the recurrent backcrossing method in the genetic background of common wheat (Triticum aestivum) cv. Chinese Spring (CS). Three genes from alien species showed segregation distortion. In NILs carrying a marker gene of rye (Secale cereale) or Aegilops caudata, the alien chromosome segments were detected by fluorescence in situ hybridization (FISH). The NILs were grown with replications and the effect of marker genes on plant morphology in the genetic background of CS was investigated. These NILs were further crossed with the corresponding monosomics of CS and 13 monosomic lines whose monosome carries a respective marker gene were established and named "marked monosomics." Many of the marked monosomics were distinguishable from the disomic NILs because of the different dosage effect of the genes. The NILs are utilized for studies on gene isolation or gene regulation. Marked monosomics are useful not only for monosomic analysis but also for production of homologous chromosome substitution lines because chromosome observation is not required.  相似文献   

12.
phlb基因诱导小麦ABD染色体组部分同源染色体配对的研究   总被引:1,自引:0,他引:1  
通过花药培养首次获得了“中国春”phlb突变体单倍体,同时也获得了“中国春”单倍体。对其细胞学观察表明,前者花粉母细胞减数分裂中期Ⅰ每个细胞染色体交叉为5.08个,后者为1.30个。证明了phlb基因在单倍体状态下具有强的诱导ABD染色体组部分同源染色体间的配对作用。  相似文献   

13.
Summary Intergeneric hybridization between four common wheat cultivars, Triticum aestivum L. cultivars Chinese Spring, Norin 12, Norin 61, and Shinchunaga, and cultivated barley, Hordeum vulgare L. cultivars Betzes, Nyugoruden, Harunanijou, and Kinai 5 were carried out in a greenhouse under 15 – 20 °C and long-day (15 h) photoperiod conditions. Two days prior to pollination, a 100 mg/1 2,4-D solution was injected into wheat stems. Among wheat cultivars, Norin 12, Norin 61, and Shinchunaga showed higher crossabilities than that of Chinese Spring, suggesting the presence of crossability gene(s) other than the kr system of Chinese Spring. Variation was also found among the barley cultivars as male parents. Betzes barley showed the highest crossability with wheat. Thus, the cross Norin 12×Betzes showed the highest crossability (8.25%), followed by Norin 61 ×Betzes (6.04%), Shinchunaga×Betzes (5.00%), and Shinchunaga×Kinai 5 (5.00%). The embryos were rescued by culture at 15–20 days after pollination. Seventyfour plants were obtained from 82 embryos. The morphology of the hybrid plants resembled that of wheat parents. Among 60 seedlings observed, 28 had 28 chromosomes, 8 had 21, 23 had aneuploid numbers of chromosomes (22–27), and 1 had 29 chromosomes. About half of the aneuploid hybrids showed mosaicism for chromosome number. By analyzing five isozyme markers of barley chromosomes, the chromosome constitutions of the aneuploid hybrids were determined. Barley chromosomes 1 and 5 were found to be preferentially eliminated in the hybrids, while chromosomes 2 and 4 were eliminated infrequently. The conditions and genetic factors for high crossability and the tendency of barley chromosome elimination are discussed.  相似文献   

14.
Structural alterations of chromosomes are often found in wheat-rye hybrids. In the majority of cases modifications are observed for rye chromosomes, yet chromosome aberration cases are described for wheat, including the progeny of Triticum aestivum disomic and monosomic addition lines. Since wheat-rye substitution and translocation lines are the source of rye chromatin in wheat breeding programs, the information on possible chromosome changes in the genomes of introgressive forms is important. Chromosome behavior in F1 meiosis and chromosomal composition of F2 karyotypes for double monosomics 1Rv-1A were studied by applying C-banding, genomic in situ hybridisation (GISH) using rye genomic DNA, and sequential in situ hybridization using repetitive sequences pAs1, pSc119.2 and centromere specific pAet-06 as probes. The double monosomics 1Rv-1A were obtained by crossing of disomic substitution line with chromosome 1A replaced by Secale cereale 1Rv in the bread wheat Saratovskaya 29 (S29) background with S29. The results indicated a high frequency of bipolar chromosome 1Rv orientation, as compared to 1A, at metaphase I (MI) (58.6 and 34.7 % of meiocytes, respectively), and, at anaphase I (AI), chromatid segregation of 1Rv compared to 1A (70.53 and 32.14 % of meiocytes, respectively). In few cases desynapsis of wheat homologues was observed, at AI, the chromosomes randomly distributed between the poles or underwent chromatid segregation. At AI, the two wheat homologues separated onto sister chromatids in 10.89 % of cells.The plants F2 karyotypes were marked with aneuploidy not only of chromosomes 1A and 1Rv, but also of 1D, 2D, 3D, 3B, 3A, 4A, 6D, 6B, 6A, and 7D. Structural changes were observed for the chromosomes of the first homoeologous group (1Rv, 1A, 1D, 1B), as well as for 2B, 5D, 6B, and 7B. The chromosomes 1Rv and 6B often demonstrated aberrations. The types of aberrations were centromeric break, deletions of various sizes, and a changed repeat pSc119.2 localization pattern.  相似文献   

15.
The interactive effect on homoeologous pairing of rye B-chromosomes with the absence of both pairing suppressor (3A, 3D, 5B) and promotor (3B, 5A, 5D) chromosomes of common wheat (Triticum aestivum L.) is analyzed by comparison of pairing at Metaphase I of 27-, 27+2B, 28- and 28+2B-chromosome plants. These plants were obtained from crosses between the respective wheat monosomics (2n=41) and rye plants (Secale cereale L.) carrying or not carrying two B-chromosomes (2n=14 or 14+2Bs). —The effect of rye B-chromosomes on pairing depends on the function of the wheat chromosome which is absent in the appropriate hybrids, i.e., rye B-chromosomes have a suppressor effect on pairing when the pairing suppressing wheat chromosomes 3A, 3D or 5B are absent, while they behave as promotors when the pairing promoting chromosomes 3B, 5A or 5D are absent.  相似文献   

16.
《Plant science》1987,51(1):77-81
Significant variation among Chinese Spring wheat (Triticum aestivum L.) and a set of seven addition lines in which chromosomes from rye (Secale cereale L.) were incorporated into the Chinese Spring background was observed for callus formation and plant regeneration from anther cultures and for plant regeneration from immature embryo cultures. Callus initiation from immature embryo cultures was uniformly high. Rye chromosome 4 contains factors which significantly increase both anther culture responses relative to Chinese Spring. Rye chromosomes 6 and 7 both contain positive factors for regeneration from immature embryo culture. While no correlation was found between anther culture and embryo culture responses, a positive correlation was observed between the two anther culture response variables.  相似文献   

17.
Summary The nature of genome change during polyploid evolution was studied by analysing selected species within the tribe Triticeae. The levels of genome changes examined included structural alterations (translocations, inversions), heterochromatinization, and nucleotide sequence change in the rDNA regions. These analyses provided data for evaluating models of genome evolution in polyploids in the genus Triticum, postulated on the basis of chromosome pairing at metaphase I in interspecies hybrids.The significance of structural chromosome alterations with respect to reduced MI chromosome pairing in interspecific hybrids was assayed by determining the incidence of heterozygosity for translocations and paracentric inversions in the A and B genomes of T. timopheevii ssp. araraticum (referred to as T. araraticum) represented by two lines, 1760 and 2541, and T. aestivum cv. Chinese Spring. Line 1760 differed from Chinese Spring by translocations in chromosomes 1A, 3A, 4A, 6A, 7A, 3B, 4B, 7B and possibly 2B. Line 2541 differed from Chinese Spring by translocations in chromosomes 3A, 6A, 6B and possibly 2B. Line 1760 also differed from Chinese Spring by paracentric inversions in arms 1AL and 4AL whereas line 2541 differed by inversions in 1BL and 4AL (not all chromosomes arms were assayed). The incidence of structural changes in the A and B genomes did not coincide with the more extensive differentiation of the B genomes relative to the A genomes as reflected by chromosome pairing studies.To assay changing degrees of heterochromatinization among species of the genus Triticum, all the diploid and polyploid species were C-banded. No general agreement was observed between the amount of heterochromatin and the ability of the respective chromosomes to pair with chromosomes of the ancestral species. Marked changes in the amount of heterochromatin were found to have occurred during the evolution of some of the polyploids.The analysis of the rDNA region provided evidence for rapid fixation of new repeated sequences at two levels, namely, among the 130 bp repeated sequences of the spacer and at the level of the repeated arrays of the 9 kb rDNA units. These occurred both within a given rDNA region and between rDNA regions on nonhomologous chromosomes. The levels of change in the rDNA regions provided good precedent for expecting extensive nucleotide sequence changes associated with differentiation of Triticum genomes and these processes are argued to be the principal cause of genome differentiation as revealed by chromosome pairing studies.  相似文献   

18.
Haploids of three cultivars of Triticum aestivum (Thatcher, Chris, and Chinese Spring) were obtained from crosses with Zea mays. The level of chromosome pairing at metaphase I and the synaptic behaviour at prophase I was studied. There were differences in the meiotic behaviour of the haploids from different cultivars. Thatcher and Chris haploids had significantly higher levels of pairing at metaphase I than Chinese Spring haploids. This metaphase I pairing was correlated with higher levels of synapsis achieved in the Thatcher and Chris prophase I nuclei than in the Chinese Spring nuclei. Variation in the effectiveness of the diploidizing mechanism among cultivars of wheat is proposed to have a genetic origin and the role of the Ph1 locus in the different haploids is discussed.  相似文献   

19.
本文利用普通小麦品系"中国春"(对照)、中国春ph1b突变体分别与八倍体小黑麦、六倍体小黑麦杂交,杂种F1的减数分裂前期Ⅰ染色体行为表现异常,中期Ⅰ出现较多的单价体、棒状二价体和多价体,在后期和末期出现落后染色体、染色体片断和微核。原因是ph1b基因的存在造成染色体联会机制紊乱,致使一些部分同源染色体配对并发生互换,有可能在以后的世代产生染色体易位与基因重组。  相似文献   

20.

Key message

High-resolution multiplex oligonucleotide FISH revealed the frequent occurrence of structural chromosomal rearrangements and polymorphisms in widely grown wheat cultivars and their founders.

Abstract

Over 2000 wheat cultivars including 19 founders were released and grown in China from 1949 to 2000. To understand the impact of breeding selection on chromosome structural variations, high-resolution karyotypes of Chinese Spring (CS) and 373 Chinese cultivars were developed and compared by FISH (fluorescence in situ hybridization) using an oligonucleotide multiplex probe based on repeat sequences. Among them, 148 (39.7%) accessions carried 14 structural rearrangements including three single translocations (designated as T), eight reciprocal translocations (RT), one pericentric inversion (perInv), and two combined variations having both the deletion and single translocations. Five rearrangements were traced to eight founders, including perInv 6B detected in 57 cultivars originating from Funo, Abbondanza, and Fan 6, T 1RS?1BL in 47 cultivars derived from the Lovrin series, RT 4AS?4AL-1DS/1DL?1DS-4AL in 31 varieties from Mazhamai and Bima 4, RT 1RS?7DL/7DS?1BL in three cultivars was from Aimengniu, and RT 5BS?5BL-5DL/5DS?5DL-5BL was only detected in Youzimai. In addition to structural rearrangements, 167 polymorphic chromosome blocks (defined as unique signal patterns of oligonucleotide repeat probes distributed within chromosomes) were identified, and 59 were present in one or more founders. Some specific types were present at high frequencies indicating selective blocks in Chinese wheat varieties. All cultivars and CS were clustered into four groups and 15 subgroups at chromosome level. Common block patterns occurred in the same subgroup. Origin, geographic distribution, probable adaptation to specific environments, and potential use of these chromosomal rearrangements and blocks are discussed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号