首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a HPLC procedure to isolate the two different hemocyanin types (HtH1 and HtH2) of the European abalone Haliotis tuberculata. On the basis of limited proteolytic cleavage, two-dimensional immunoelectrophoresis, PAGE, N-terminal protein sequencing and cDNA sequencing, we have identified eight different 40-60-kDa functional units (FUs) in HtH2, termed HtH2-a to HtH2-h, and determined their linear arrangement within the elongated 400-kDa subunit. From a Haliotis cDNA library, we have isolated and sequenced a cDNA clone which encodes the five C-terminal FUs d, e, f, g and h of HtH2. As shown by multiple sequence alignments, defg of HtH2 correspond structurally to defg from Octopus dofleini hemocyanin. HtH2-e is the first FU of a gastropod hemocyanin to be sequenced. The new Haliotis hemocyanin sequences are compared to their counterparts in Octopus, Helix pomatia and HtH1 (from the latter, the sequences of FU-f, FU-g and FU-h have recently been determined) and discussed in relation to the recent 2.3 A X-ray structure of FU-g from Octopus hemocyanin and the 15 A three-dimensional reconstruction of the Megathura crenulata hemocyanin didecamer from electron micrographs. This data allows, for the first time, an insight into the evolution of the two functionally different hemocyanin isoforms found in marine gastropods. It appears that they evolved several hundred million years ago within the Prosobranchia, after separation of the latter from the branch leading to the Pulmonata. Moreover, as a structural explanation for the inefficiency of the type 1 hemocyanin to form multidecamers in vivo, the additional N-glycosylation sites in HtH1 compared to HtH2 are discussed.  相似文献   

2.
Hemocyanin subunit organization of the gastropod Rapana thomasiana   总被引:1,自引:0,他引:1  
RtH1 and RtH2, the two hemocyanin isoforms of the prosobranch gastropod Rapana thomasiana, have been purified by anion-exchange chromatography and studied by SDS-PAGE and immunoelectrophoresis. Both subunit types are built up of eight functional units (FUs). Under reducing conditions subunit RtH2 splits into two fragments, RtH2-a-f and RtH2-gh, suggesting the presence of a disulfide bridge between FU2-f and FU2-g. By proteolytic cleavage of the subunits into three-, two-, and single-FU fragments, purification of fragments by HPLC, N-terminal sequencing of the peptides, and crossed-line immunoelectrophoresis, FUs-a-h of RtH2 and FU-a, FU-d, FU-e, and FU-f of RtH1 were identified and correlated to the eight-FUs pattern of immunoelectrophoresis. FU-a, FU-e, and FU-f of RtH1 and RtH2 are very closely related immunologically. RtH1 and RtH2 both correspond immunologically to KLH2, one of the two hemocyanin isoforms of the prosobranch gastropod Megathura crenulata.  相似文献   

3.
Rapana thomasiana hemocyanin (RtH) is a mixture of two hemocyanin (Hc) isoforms termed RtH1 and RtH2. Both subunit types are built up of eight functional units (FUs). The C-terminal functional unit (RtH1-h) of the Rapana Hc subunit 1 has been isolated by limited trypsinolysis of the subunit polypeptide chain. The oxy- and apo-forms of the unit are characterized by fluorescence spectroscopy. Upon excitation of RtH1-h at 295 or 280 nm, tryptophyl residues buried in the hydrophobic interior of the protein globule determine the fluorescence emission. This is confirmed by quenching experiments with acrylamide, cesium chloride and potassium iodide. The copper-dioxygen system at the binuclear active site quenches the indole emission of the oxy-RtH1-h. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophyl residues in the apo-RtH1-h. The thermal stability of the apo-RtH1-h is characterized fluorimetrically by the "melting" temperature T(m) (65 degrees C) and by the transition temperature T(m) (83 degrees C) obtained by differential scanning calorimetry for oxy-RtH1-h. The results confirm the role of the copper-dioxygen complex for the stabilization of the Hc structure in solution.  相似文献   

4.
A 12 A resolution three-dimensional density map of the Haliotis tuberculata hemocyanin type 1 (HtH1) didecamer has been obtained by cryoelectron microscopy of unstained molecules and angular reconstitution. The dyad symmetry of the 8 MDa D5 HtH1 didecamer, formed by the pairing of two asymmetric 4 MDa ring-like C5 decamers, is emphasised. The major and minor surface helical grooves of the didecamer are well defined, in agreement with earlier data on molluscan hemocyanins. The location of the obliquely orientated repeating unit, a subunit dimer, within the decamer has been defined. Following interactive extraction of this dimer, several new structural features of the dimer and of the subunit have now emerged with improved detail. The subunit dimer possesses pseudo 2-fold symmetry, resulting from the steric arrangement of the wall domains/functional units (FUs-abcdef) of the two subunits. The arc and collar FUs (g and h) depart from this inherent 2-fold symmetry and are thereby responsible for the asymmetry of the C5 decamer, with the internalised collar/arc complex at one edge of the decamer. The FU heterodimers forming the wall morphological units have a hollow centre, and thus create a series of repeating channels that extend within the wall through all three tiers of the decamer. The connections between the wall and the arc are defined with improved clarity, and evidence is provided to indicate that the arc and collar FU pairs have a homodimeric composition (gg and hh, respectively). Two possibilities for the subunit path within the subunit dimer are presented, which correlate with the available structural, immunolabelling and protease cleavage data from HtH1 and other molluscan hemocyanins.  相似文献   

5.
The carbohydrate content and composition of hemocyanins (Hcs) of three prosobranchs (gastropods), Rapana thomasiana, Megathura crenulata and Haliotis tuberculata, were compared. The analyses were performed by gas-liquid chromatography after methanolysis, re-N-acetylation and trimethylsilylation. The two structural subunits of R. thomasiana Hc, RtH1 and RtH2, both showed 2.6% (w/w) carbohydrate content with very similar monosaccharide composition, indicative for N-glycosylation. The two isoforms of M. crenulata Hc (KLH), KLH1 and KLH2, on the other hand, definitely differed in glycosylation: KLH2 (3.4% carbohydrate, w/w) comprised relatively less mannose and more N-acetylgalactosamine than KLH1 (3.0% carbohydrate, w/w), in agreement with the fact that O-glycosylation has been observed in a functional unit (FU) of KLH2. For the Hc of the abalone H. tuberculata, with 4.5% (w/w) carbohydrate, appreciable amounts of 3-O-methyl-d-mannose and 3-O-methyl-d-galactose were detected, showing that the occurrence of methylated sugars is not restricted to the Hcs of pulmonates. From the structural subunit RtH2 of Rapana Hc the FUs RtH2-b and RtH2-d were isolated. On the basis of amino acid sequence analysis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the respective native and PNGase-F-treated glycopeptides, one N-glycosylation site was found for each FU. This site was located at Asn-405 for RtH2-b and at Asn-394 for RtH2-d; the carbohydrate moiety corresponded to GlcNAc2Man6 and GlcNAc2Man5, respectively. A comparison was made with the N-glycosylation sites of other FUs of Rapana Hc.  相似文献   

6.
We have identified two separate hemocyanin types (HtH1 and HtH2) in the European abalone Haliotis tuberculata. HtH1/HtH2 hybrid molecules were not found. By selective dissociation of HtH2 we isolated HtH1 which, as revealed by electron microscopy and SDS/PAGE, is present as didecamers of a approximately 400 kDa subunit. Immunologically, HtH1 and HtH2 correspond to keyhole limpet hemocyanin (KLH)1 and KLH2, respectively, the two well-studied hemocyanin types of the closely related marine gastropod Megathura crenulata. On the basis of limited proteolytic cleavage, two-dimensional immunoelectrophoresis, SDS/PAGE and N-terminal sequencing, we identified eight different 40-60 kDa functional units in HtH1, termed HtH1-a to HtH1-h, and determined their linear arrangement within the elongated subunit. From Haliotis mantle tissue, rich in hemocyanin-producing pore cells, we isolated mRNA and constructed a cDNA library. By expression screening with HtH-specific rabbit antibodies, a cDNA clone was isolated and sequenced which codes for the three C-terminal functional units f, g and h of HtH1. Their sequences were aligned to those available from other molluscs, notably to functional unit f and functional unit g from the cephalopod Octopus dofleini. HtH1-f, which is the first sequenced functional unit of type f from a gastropod hemocyanin, corresponds to functional unit f from Octopus. Also functional unit g from Haliotis and Octopus correspond to each other. HtH1-h is a gastropod hemocyanin functional unit type which is absent in cephalopods and has not been sequenced previously. It exhibits a unique tail extension of approximately 95 amino acids, which is lacking in functional units a to g and aligns with a published peptide sequence of 48 amino acids from functional unit h of Helix pomatia hemocyanin. The new Haliotis sequences are discussed with respect to their counterparts in Octopus, the 15 A three-dimensional reconstruction of the KLH1 didecamer from electron micrographs, and the recent 2.3 A X-ray structure of functional unit g from Octopus hemocyanin.  相似文献   

7.
Keyhole limpet hemocyanin (KLH) is a mixture of two hemocyanin isoforms, termed KLH1 and KLH2. Within KLH1 eight oxygen-binding functional units (FUs), 1-a to 1-h, have been identified, in contrast to KLH2, which was previously thought to be organized in seven FUs (2-a to 2-g). By limited proteolysis of KLH2 subunits, isolation of the polypeptide fragments, and N-terminal sequencing, we have now identified an eighth FU of type h, with a molecular mass of 43 kDa. This is unusually small for a FU h from a gastropodan hemocyanin. It is also shown that KLH2 didecamers can be split into a stable and homogeneous population of decamers by dialysis against 50 mM Tris/HCl, pH 7.5, in the absence of divalent cations. Electron microscopic immunolocalization using a specific monoclonal antibody reveals that FU KLH2-h is located at the collar of the decamer.  相似文献   

8.
The sequence of a gastropod hemocyanin (HtH1 from Haliotis tuberculata)   总被引:3,自引:0,他引:3  
The eight functional units (FUs), a-h, of the hemocyanin isoform HtH1 from Haliotis tuberculata (Prosobranchia, Archaeogastropoda) have been sequenced via cDNA, which provides the first complete primary structure of a gastropod hemocyanin subunit. With 3404 amino acids (392 kDa) it is the largest polypeptide sequence ever obtained for a respiratory protein. The cDNA comprises 10,758 base pairs and includes the coding regions for a short signal peptide, the eight different functional units, a 3'-untranslated region of 478 base pairs, and a poly(A) tail. The predicted protein contains 13 potential sites for N-linked carbohydrates (one for HtH1-a, none for HtH1-c, and two each for the other six functional units). Multiple sequence alignments show that the fragment HtH1-abcdefg is structurally equivalent to the seven-FU subunit from Octopus hemocyanin, which is fundamental to our understanding of the quaternary structures of both hemocyanins. Using the fossil record of the gastropod-cephalopod split to calibrate a molecular clock, the origin of the molluscan hemocyanin from a single-FU protein was calculated as 753 +/- 68 million years ago. This fits recent paleontological evidence for the existence of rather large mollusc-like species in the late Precambrian.  相似文献   

9.
Conformational and structural modulations of the NH2-terminal region of fibrinogen and fibrin associated with plasmin cleavage have been examined utilizing specific antibody probes. The E region derived from the NH2-terminal aspects of fibrinogen undergoes complex structural and conformational changes throughout the cleavage process as indicated by differences in the quantitative and qualitative expression of antigenic determinants by the E region of each isolated cleavage fragment. When the range of antigenic determinants recognized by the antibody probe is limited to a specific molecular marker on the gamma chain within the E region, fg-E-neo, evidence for a systematic and progressive modulation of this site during plasmin cleavage is observed. Fg-E-neo undergoes progressive exposure as the cleavage of fibrinogen proceeds from X to Y to D:E complex. Separation of the D:E complex into its constituent, D and E fragments, is associated with further exposure of fg-E-neo determinants. The sequential cleavage of fibrin by plasmin also leads to progressive exposure of the fg-E-neo site; however, comparison of corresponding fragments derived from fibrinogen and fibrin reveals significant differences in the character of fg-E-neo expression. Immunochemical differences between fibrin and fibrinogen E fragments are not abolished by further exposure of the fragments to plasmin, are apparently not due to the presence or absence of fibrinopeptides, and are maintained following denaturation and renaturation of the fragments. These results suggest that the differential expression of fg-E-neo by the E fragments may be primarily dependent upon differences in amino acid compositions of the fragments.  相似文献   

10.
The oligosaccharide structures of the structural subunit HtH1 of Haliotis tuberculata hemocyanin (HtH) were studied by mass spectral sequence analysis of the glycans. The proposed structures are based on MALDI-TOF-MS data before and after treatment with the specific exoglycosidases β1-3,4,6-galactosidase and α1-6(>2,3,4) fucosidase followed by sequence analysis via electrospray ionization MS/MS-spectra. In total, 15 glycans were identified as a highly heterogeneous group of structures. As in most molluscan hemocyanins, the glycans of HtH1 contain a terminal MeHex, but more interestingly, a novel structural motif was observed: MeHex[Fuc(α1-3)-]GlcNAc, including thus MeHex and (α1-3)-Fuc residues being linked to an internal GlcNAc residue. While the functional unit (FU) c (HtH1-c) is completely lacking any potential glycosylation site, FU-h possesses a second exposed sugar attachment site between beta-strands 8 and 9 within the beta sandwich domain compared to the other FUs. The glycosylation pattern/sites show a high degree of conservation. In FU-h two prominent potential glycosylation sites can be detected. The finding that HtH1 is not able to form multidecameric structures in vivo could be explained by the presence of the exposed glycan on the surface of FU-h.  相似文献   

11.
Keyhole limpet hemocyanin (KLH) is a mixture of two hemocyanin isoforms, termed KLH1 and KLH2. Within KLH1 eight oxygen-binding functional units (FUs), 1-a to 1-h, have been identified, in contrast to KLH2, which was previously thought to be organized in seven FUs (2-a to 2-g). By limited proteolysis of KLH2 subunits, isolation of the polypeptide fragments, and N-terminal sequencing, we have now identified an eighth FU of type h, with a molecular mass of 43 kDa. This is unusually small for a FU h from a gastropodan hemocyanin. It is also shown that KLH2 didecamers can be split into a stable and homogeneous population of decamers by dialysis against 50 mM Tris/HCl, pH 7.5, in the absence of divalent cations. Electron microscopic immunolocalization using a specific monoclonal antibody reveals that FU KLH2-h is located at the collar of the decamer.  相似文献   

12.
Altenhein B  Markl J  Lieb B 《Gene》2002,301(1-2):53-60
We have cloned and sequenced cDNAs coding for the complete primary structure of HtH2, the second hemocyanin isoform of the marine gastropod Haliotis tuberculata. The deduced protein sequence comprises 3399 amino acids, corresponding to a molecular mass of 392 kDa. It shares only 66% of structural identity with the previously analysed first isoform HtH1, and according to a molecular clock, the two isoforms of Haliotis hemocyanin separated ca. 320 million years ago. By genomic polymerase chain reaction and 5' race, we have also sequenced the complete gene of HtH2 (18,598 bp), except of the 5' region in front of the secreted protein. It encompasses 15 exons and 14 introns and shows several microsatellite-rich regions. It mirrors the modular structure of the encoded hemocyanin subunit, with a linear arrangement of eight different functional units separated and bordered by seven phase 1 'linker introns'. In addition, within regions encoding three of the functional units, the HtH2 gene contains six 'internal introns'. Comparison to previously sequenced genes of Octopus dofleini hemocyanin and Haliotis hemocyanin isoform (HtH1) suggests Precambrian and Palaeocoic hot spot of intron gains, followed by 320 million years of absolute stasis.  相似文献   

13.
Proteolytic studies on the structure of bovine von Willebrand factor   总被引:1,自引:0,他引:1  
M A Mascelli  E P Kirby 《Biochemistry》1988,27(4):1274-1284
Bovine von Willebrand factor (vWF) was digested with protease I (P-I), a metalloprotease isolated from rattlesnake venom. Digestion of vWF for 24 h with P-I yielded a terminal digest consisting of an equimolar mixture of two major fragments (apparent Mr 250K and 200K). The 250-kilodalton (kDa) fragment consists of a 125-kDa chain from one subunit and a 45- and 78-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment consists of a 97-kDa chain from one subunit and a 35- and 61-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment binds to heparin, and the heparin binding domain is located on the 97-kDa polypeptide chain. This fragment also competes with labeled, native vWF for binding to formalin-fixed human platelets, with an IC50 of 12.5 micrograms/mL (65 nM). However, native vWF has an IC50 of 2.5 micrograms/mL, indicating that the affinity of the 200-kDa fragment for platelets is approximately one-fifth that of vWF. The 200-kDa fragment agglutinates platelets, but its agglutinating ability is only 5% that of the native molecule. Only the 200-kDa fragment is recognized by monoclonal antibodies 2 and H-9, which are directed against vWF and inhibit vWF binding to platelet glycoprotein Ib (GPIb). Immunological studies, using nine monoclonal antibodies directed against vWF, and the demonstration that the heparin and GPIb binding domains are located on only one fragment suggest that the two fragments are composed of different regions of the vWF subunit. Analysis of the P-I cleavage pattern suggests that all vWF subunits are not cleaved in the same fashion. The first cleavage on half of the subunits generates the 45-kDa terminal and 175-kDa intermediate digest products. The 175-kDa chain is again cleaved, producing the 97- and 78-kDa terminal polypeptide chains. However, the first cleavage of the other subunits generates the 35-kDa terminal and the 186-kDa intermediate digest product, which upon cleavage produces the 125- and 61-kDa terminal polypeptide chains. Immunological data support the asymmetric cleavage pattern. An epitope for a monoclonal antibody is present on both the 186- and 175-kDa intermediate digest products but is only found on one terminal digest fragment, the 78-kDa polypeptide chain, suggesting that the 186- and 175-kDa polypeptides are cleaved at different sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Functional unit (FU) RtH2-e from Rapana thomasiana hemocyanin (Hc) was degraded into small fragments with chymotrypsin. The glycopeptides were separated from the non-glycosylated peptides by chromatography on Concanavalin-A-Sepharose and characterized by mass spectrometry. The glycan part of the glycopeptides (all with common peptide stretch of 14 amino acids) consists of the classical trimannosyl-N,N-diacetylchitobiose core for N-glycosylation, predominantly extended with a unique tetrasaccharide that is branched on fucose. In inhibition ELISA experiments, the glycopeptides interfered in the complex formation between FU RtH2-e and rabbit antibodies against Rapana Hc (about 30% of inhibition). The inhibition also was retained after treatment of the glycopeptides with pronase in order to completely destroy the peptide part. The inhibitory effect of the non-glycosylated peptides, on the other hand, was very low. This study thus demonstrates that the glycans attached to FU RtH2-e contribute to the antigenicity of Rapana Hc.  相似文献   

15.
Glycopeptides, isolated from a trypsinolysate of functional unit (FU) RtH2-e of Rapana thomasiana hemocyanin subunit 2, were analysed by electrospray ionization mass spectrometry and MS/MS. From the molecular mass observed after deglycosylation, it was inferred that all glycopeptides shared the same peptide stretch 92-143 of FU RtH2-e with a glycosylation site at Asn-127. Besides the core structure Man(3)GlcNAc(2) for N-glycosylation, structures with a supplementary GlcNAc linked to either the Man(alpha1-3) or the Man(alpha1-6) arm and/or an additional tetrasaccharide unit connected to the other Man arm were observed, indicating the existence of microheterogeneity at the glycan level. The tetrasaccharide unit contains a central fucose moiety substituted with 3-O-methylgalactose and N-acetylgalactosamine, and linked to GlcNAc at the reducing end. This structure represents a novel N-glycan motif and is likely to be immunogenic. A second potential site for N-glycosylation in FU RtH2-e at Asn-17 was shown to be not glycosylated.  相似文献   

16.
Plasmin not only functions as a key enzyme in the fibrinolytic system but also directly inactivates factor VIII and other clotting factors such as factor V. However, the mechanisms of plasmin-catalyzed factor VIII inactivation are poorly understood. In this study, levels of factor VIII activity increased approximately 2-fold within 3 min in the presence of plasmin, and subsequently decreased to undetectable levels within 45 min. This time-dependent reaction was not affected by von Willebrand factor and phospholipid. The rate constant of plasmin-catalyzed factor VIIIa inactivation was approximately 12- and approximately 3.7-fold greater than those mediated by factor Xa and activated protein C, respectively. SDS-PAGE analysis showed that plasmin cleaved the heavy chain of factor VIII into two terminal products, A1(37-336) and A2 subunits, by limited proteolysis at Lys(36), Arg(336), Arg(372), and Arg(740). The 80-kDa light chain was converted into a 67-kDa subunit by cleavage at Arg(1689) and Arg(1721), identical to the pattern induced by factor Xa. Plasmin-catalyzed cleavage at Arg(336) proceeded faster than that at Arg(372), in contrast to proteolysis by factor Xa. Furthermore, breakdown was faster than that in the presence of activated protein C, consistent with rapid inactivation of factor VIII. The cleavages at Arg(336) and Lys(36) occurred rapidly in the presence of A2 and A3-C1-C2 subunits, respectively. These results strongly indicated that cleavage at Arg(336) was a central mechanism of plasmin-catalyzed factor VIII inactivation. Furthermore, the cleavages at Arg(336) and Lys(36) appeared to be selectively regulated by the A2 and A3-C1-C2 domains, respectively, interacting with plasmin.  相似文献   

17.
Hemocyanins are giant extracellular oxygen carriers in the hemolymph of many molluscs. Nautilus pompilius (Cephalopoda) hemocyanin is a cylindrical decamer of a 350 kDa polypeptide subunit that in turn is a “pearl-chain” of seven different functional units (FU-a to FU-g). Each globular FU has a binuclear copper centre that reversibly binds one O2 molecule, and the 70-FU decamer is a highly allosteric protein. Its primary structure and an 11 Å cryo-electron microscopy (cryo-EM) structure have recently been determined, and the crystal structures of two related FU types are available in the databanks. However, in molluscan hemocyanin, the precise subunit pathway within the decamer, the inter-FU interfaces, and the allosteric unit are still obscure, but this knowledge is crucial to understand assembly and allosterism of these proteins. Here we present the cryo-EM structure of Nautilus hemocyanin at 9.1 Å resolution (FSC1/2-bit criterion), and its molecular model obtained by rigid-body fitting of the individual FUs. In this model we identified the subunit dimer, the subunit pathway, and 15 types of inter-FU interface. Four interface types correspond to the association mode of the two protomers in the published Octopus FU-g crystal. Other interfaces explain previously described morphological structures such as the fenestrated wall (which shows D5 symmetry), the three horizontal wall tiers, the major and minor grooves, the anchor structure and the internal collar (which unexpectedly has C5 symmetry). Moreover, the potential calcium/magnesium and N-glycan binding sites have emerged. Many interfaces have amino acid constellations that might transfer allosteric interaction between FUs. From their topologies we propose that the prime allosteric unit is the oblique segment between major and minor groove, consisting of seven FUs from two different subunits. Thus, the 9 Å structure of Nautilus hemocyanin provides fundamentally new insight into the architecture and function of molluscan hemocyanins.  相似文献   

18.
We describe here the vanadate-dependent photocleavage of the gamma heavy chain from the Chlamydomonas outer arm dynein and the pathways by which this molecule is degraded by endoproteases. UV irradiation in the presence of ATP, Mg2+, and vanadate cleaves the gamma chain at a single site (termed V1) to yield fragments of Mr 235,000 and 180,000. Irradiation in the presence of vanadate and Mn2+ results in cleavage of the gamma chain at two other sites (termed V2a and V2b) to yield fragment pairs of Mr 215,000/200,000 and 250,000/165,000. The mass of the intact chain is therefore estimated to be 415,000 D. We have located the major tryptic and staphylococcal protease cleavage sites in the gamma chain, determined the origins of the resulting fragments, and identified the regions which contain the epitopes recognized by two different monoclonal antibodies. Both antibodies react with the smaller V1 fragment; the epitope recognized by antibody 25-8 is within 9,000-52,000 D of the original gamma-chain terminus contained in that fragment, whereas that recognized by antibody 12 gamma B is within 16,000 D of the V1 site. The data permit the construction of a linear map showing the structural organization of the polypeptide. The substructure of the gamma chain is similar to that of the alpha and beta chains of the outer arm dynein with regard to polarity as defined by the sites of vanadate-dependent photocleavage, and to that of the beta chain with regard to a highly sensitive protease site located approximately 10,000 D from the original terminus contained in the smaller V1 fragment.  相似文献   

19.
The beta 2 subunit of tryptophan synthase is composed of two independently folding domains connected by a hinge segment of the polypeptide that is particularly susceptible to limited proteolysis by trypsin [H?gberg-Raibaud, A., & Goldberg, M. (1977) Biochemistry 16, 4014-4019]. Since tryptic cleavage in the hinge region inactivates the beta 2 subunit, the spatial relationship between the two domains is important for enzyme activity. However, it was not previously known whether inactivation results from cleavage of the chain or from the loss of internal fragment(s) subsequent to cleavage at two or more sites. We now report comparative studies of limited proteolysis by three proteinases: trypsin and endoproteinases Lys-C and Arg-C. Our key finding that endoproteinase Arg-C inactivates the beta 2 subunit by cleavage at a single site (Arg-275) demonstrates the important role of the hinge peptide for enzymatic activity. We have also identified the sites of cleavage and the time course of proteolysis by trypsin at Arg-275, Lys-283, and Lys-272 and by endoproteinase Lys-C at Lys-283 and Lys-272. Sodium dodecyl sulfate gel electrophoresis, Edman degradation, and carboxypeptidases B and Y have been used to identify the several fragments and peptides produced. Our finding that the beta 2 subunit and F1 fragments have a heterogeneous amino terminus (Met-1 or Thr-2) indicates that the amino-terminal methionine is incompletely removed during posttranslational modification. Our results show that Edman degradation can be effectively used with a protein of known sequence to analyze proteolytic digests that have at least four different amino-terminal sequences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A new approach to studying the arrangement of subunits in the multienzyme complex tryptophan synthase is reported. Comparative studies of limited tryptic proteolysis of the alpha2beta2 complex and of the separate beta2 and alpha subunits show that subunit association inhibits two types of proteolysis which occur with the separate subunits: (i) cleavage of the beta2 subunit to two fragments with consequent loss of activity and (ii) complete degradation of the alpha subunit with loss of activity. Trypsin treatment of the alpha2beta complex does, however, result in at least one cleavage of the alpha subunit and yields an active alpha'2beta2 complex. The alpha'2beta2 complex can be resolved into an active beta2 subunit and an active alpha derivative termed alpha'. These two species can reassociate into the active alpha'2beta2 complex. alpha' derivative can be separated into a large fragment of Mr approximately 20,000 to 23,000 and a small peptide by polyacrylamide gel electrophoresis under denaturing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号