首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first contact a virus makes with cells is an important determinant of its tropism. Murid Herpesvirus-4 (MuHV-4) is highly dependent on glycosaminoglycans (GAGs) for cell binding. Its first contact is therefore likely to involve a GAG-binding virion glycoprotein. We have previously identified two such proteins, gp70 and gp150. Gp70 binds strongly to GAGs. However, deleting it makes little difference to MuHV-4 cell binding or GAG-dependence. Deleting gp150, by contrast, frees MuHV-4 from GAG dependence. This implies that GAGs normally displace gp150 to allow GAG-independent cell binding. But the gp150 GAG interaction is weak, and so would seem unlikely to make an effective first contact. Since neither gp70 nor gp150 matches the expected profile of a first contact glycoprotein, our understanding of MuHV-4 GAG interactions must be incomplete. Here we relate the seemingly disconnected gp70 and gp150 GAG interactions by showing that the MuHV-4 gH/gL also binds to GAGs. gH/gL-blocking and gp70-blocking antibodies individually had little effect on cell binding, but together were strongly inhibitory. Thus, there was redundancy in GAG binding between gp70 and gH/gL. Gp150-deficient MuHV-4 largely resisted blocks to gp70 and gH/gL binding, consistent with its GAG independence. The failure of wild-type MuHV-4 to do the same argues that gp150 is normally engaged only down-stream of gp70 or gH/gL. MuHV-4 GAG dependence is consequently two-fold: gp70 or gH/gL binding provides virions with a vital first foothold, and gp150 is then engaged to reveal GAG-independent binding.  相似文献   

2.
Gamma-herpesviruses persist in lymphocytes and cause disease by driving their proliferation. Lymphocyte infection is therefore a key pathogenetic event. Murid Herpesvirus-4 (MuHV-4) is a rhadinovirus that like the related Kaposi''s Sarcoma-associated Herpesvirus persists in B cells in vivo yet infects them poorly in vitro. Here we used MuHV-4 to understand how virion tropism sets the path to lymphocyte colonization. Virions that were highly infectious in vivo showed a severe post-binding block to B cell infection. Host entry was accordingly an epithelial infection and B cell infection a secondary event. Macrophage infection by cell-free virions was also poor, but improved markedly when virion binding improved or when macrophages were co-cultured with infected fibroblasts. Under the same conditions B cell infection remained poor; it improved only when virions came from macrophages. This reflected better cell penetration and correlated with antigenic changes in the virion fusion complex. Macrophages were seen to contact acutely infected epithelial cells, and cre/lox-based virus tagging showed that almost all the virus recovered from lymphoid tissue had passed through lysM+ and CD11c+ myeloid cells. Thus MuHV-4 reached B cells in 3 distinct stages: incoming virions infected epithelial cells; infection then passed to myeloid cells; glycoprotein changes then allowed B cell infection. These data identify new complexity in rhadinovirus infection and potentially also new vulnerability to intervention.  相似文献   

3.
4.
5.
Herpesvirus glycoprotein complex gH/gL provides a core entry function through interactions with the fusion protein gB and can also influence tropism through receptor interactions. The Epstein-Barr virus gH/gL and gH/gL/gp42 serve both functions for entry into epithelial and B cells, respectively. Human cytomegalovirus (HCMV) gH/gL can be bound by the UL128-131 proteins or gO. The phenotypes of gO and UL128-131 mutants suggest that gO-gH/gL interactions are necessary for the core entry function on all cell types, whereas the binding of UL128-131 to gH/gL likely relates to a distinct receptor-binding function for entry into some specific cell types (e.g., epithelial) but not others (e.g., fibroblasts and neurons). There are at least eight isoforms of gO that differ by 10 to 30% of amino acids, and previous analysis of two HCMV strains suggested that some isoforms of gO function like chaperones, disassociating during assembly to leave unbound gH/gL in the virion envelope, while others remain bound to gH/gL. For the current report, we analyzed the gH/gL complexes present in the virion envelope of several HCMV strains, each of which encodes a distinct gO isoform. Results indicate that all strains of HCMV contain stable gH/gL/gO trimers and gH/gL/UL128-131 pentamers and little, if any, unbound gH/gL. TR, TB40/e, AD169, and PH virions contained vastly more gH/gL/gO than gH/gL/UL128-131, whereas Merlin virions contained mostly gH/gL/UL128-131, despite abundant unbound gO remaining in the infected cells. Suppression of UL128-131 expression during Merlin replication dramatically shifted the ratio toward gH/gL/gO. These data suggest that Merlin gO is less efficient than other gO isoforms at competing with UL128-131 for binding to gH/gL. Thus, gO diversity may influence the pathogenesis of HCMV through effects on the assembly of the core versus tropism gH/gL complexes.  相似文献   

6.
The gH/gL heterodimer represents two of the four herpes simplex virus glycoproteins necessary and sufficient for membrane fusion. We generated deletions and point mutations covering gL residues 24 to 43 to investigate that region''s role in gH/gL intracellular trafficking and in membrane fusion. Multiple mutants displayed a 40 to 60% reduction in cell fusion with no effect on gH/gL trafficking. The amino terminus of gL plays an important role in the gH/gL contribution to membrane fusion.  相似文献   

7.
8.
9.
10.
Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination.  相似文献   

11.
Glycoprotein L (gL) is one of four glycoproteins required for the entry of herpes simplex virus (HSV) into cells and for virus-induced cell fusion. This glycoprotein oligomerizes with gH to form a membrane-bound heterodimer but can be secreted when expressed without gH. Twelve unique gL linker-insertion mutants were generated to identify regions critical for gH binding and gH/gL processing and regions essential for cell fusion and viral entry. All gL mutants were detected on the cell surface in the absence of gH, suggesting incomplete cleavage of the signal peptide or the presence of a cell surface receptor for secreted gL. Coexpression with gH enhanced the levels of cell surface gL detected by antibodies for all gL mutants except those that were defective in their interactions with gH. Two insertions into a conserved region of gL abrogated the binding of gL to gH and prevented gH expression on the cell surface. Three other insertions reduced the cell surface expression of gH and/or altered the properties of gH/gL heterodimers. Altered or absent interaction of gL with gH was correlated with reduced or absent cell fusion activity and impaired complementation of virion infectivity. These results identify a conserved domain of gL that is critical for its binding to gH and two noncontiguous regions of gL, one of which contains the conserved domain, that are critical for the gH/gL complex to perform its role in membrane fusion.Glycoprotein L (gL) is one of the four glycoproteins required for the entry of herpes simplex virus (HSV) into cells and for virus-induced cell fusion (26, 33). The others are gB, gD, and gH (30). The functional unit containing gL is a heterodimer formed with gH (gH/gL) (15). Because mature gL has no membrane-spanning domain, other than a cleavable signal peptide, it is secreted unless it is coexpressed with gH, a type 1 glycoprotein that anchors gL to the cell membrane (2). Also, gH is not properly processed or transported out of the endoplasmic reticulum unless it is coexpressed with gL (15).Most, if not all, herpesviruses express orthologs of gB, gH, and gL, which are believed to form the core membrane-fusing machinery necessary for viral entry and cell fusion. For some herpesviruses, such as Epstein-Barr virus and human cytomegalovirus, the gH/gL oligomer may contain additional viral subunits that can influence binding of the complex to cell receptors and determine cell tropism (14, 34, 35). For HSV, however, only gD and gB have been shown to have receptor-binding activities that are required for entry (27, 31). Although HSV gH has an RGD motif and the gH/gL heterodimer can bind to certain integrins, this binding seems not to be necessary for viral entry (3, 22).The initial interaction of HSV with cells can be the reversible attachment of virus to cell surface heparan sulfate, mediated by viral glycoprotein gB and/or gC (29). Then, gD can bind to one of its receptors, including herpesvirus entry mediator (HVEM), a member of the tumor necrosis factor receptor family; nectin-1 or nectin-2, cell adhesion molecules belonging to the immunoglobulin superfamily; or specific sites in heparan sulfate generated by 3-O-sulfotransferases (31). In addition to binding to heparan sulfate, gB can also bind to other cell surface receptors, including paired immunoglobulin-like receptor alpha (PILRα) (27). Binding of both gD and gB to one of their respective receptors appears to be required for triggering the membrane-fusing activity of gB and/or gH/gL, which leads to viral entry.A recent X-ray structure of HSV type 1 (HSV-1) gB suggests that it is a class III viral fusogen similar in domain organization, but not primary sequence, to the G protein of vesicular stomatitis virus (13). It has been proposed that HSV-1 gH has features characteristic of class I viral fusogens, such as putative heptad repeats and fusion peptides (6, 9-11). Also, peptides matching the sequence of gH can interact with lipids and/or induce the fusion of lipid vesicles (4, 5, 8). Hemifusion between cells and between virus and cell can be induced by gH/gL and gD in the absence of gB (32). Many questions remain about the respective roles of gH/gL and gB in inducing membrane fusion.The four conserved cysteines in gL were found to be essential for gL-gH association and function (1). Mutational analyses of gL by C-terminal deletions showed that the first 147 amino acids of gL are sufficient for association with gH but that the first 161 amino acids are necessary for cotransport of gH and gL to the cell surface (17, 23) and for gL activity in cell fusion and viral entry (17). Lastly, certain anti-gL monoclonal antibodies (MAbs) can inhibit cell fusion but not viral entry, despite demonstrable binding of the MAbs to virus, suggesting that gL may play a different role in each process (21). These MAbs were mapped to the C-terminal region of gL (21, 23). The diagram at the bottom of Fig. Fig.11 shows the locations of the gL features mentioned above and of the signal peptide.Open in a separate windowFIG. 1.Effects of insertional mutations on HSV-1 gL and gH cell surface expression. CHO cells were transfected with plasmids expressing gH and WT gL or a gL mutant. Cell surface expression of gL and gH was quantified by CELISA using polyclonal R88 antiserum (filled circles) and MAb 52S (open triangles), respectively. A linear representation of the gL polypeptide is shown below the graph, with coded bars identifying features of gL. The bars represent the signal peptide (uncolored hatched), the N-terminal 161-amino-acid fragment necessary for the formation of functional gH/gL complexes (dark gray), highly conserved residues within this fragment (cross-hatched dark- gray bar), and epitopes recognized by a panel of anti-gL MAbs (light-gray and uncolored vertically striped bars). The values presented for cell surface expression of each mutant gL and of cotransfected WT gH are means from three independent experiments expressed as percentages of WT gL (or of gH cotransfected with WT gL) values, after subtraction of background values obtained in the absence of gL expression and as a function of the position of the insertion. Standard deviations are presented in Fig. Fig.22 and and33 for similar experiments.The interactions between gL and gH required for proper intracellular transport, processing, and cell surface expression make it difficult to investigate the functional role of one of these glycoproteins in cell fusion and viral entry independently of the other. We generated a panel of gL linker-insertion mutants to identify regions critical for gH binding and transport and regions essential for cell fusion and viral entry. One aim was to determine whether these roles of gL could be dissociated or were linked. Characterization of 12 unique gL linker-insertion mutants showed that (i) a conserved domain of gL is critical for the physical interaction of gL with gH and for the normal processing of gH, (ii) two noncontiguous regions of gL, one of which contains the highly conserved domain, are critical for the normal conformation and function of gH/gL heterodimers, and (iii) wild-type (WT) and mutant gLs can be detected on the cell surface in the absence of gH, suggesting the possibility of an independent role for uncomplexed gL. These results support and extend previous studies suggesting that gL has a larger role in membrane fusion than serving as a chaperone for gH and that specific mutations in gL can influence the function of the gH/gL heterodimer.  相似文献   

12.
Herpes simplex virus entry into cells requires a multipartite fusion apparatus made of glycoprotein D (gD), gB, and heterodimer gH/gL. gD serves as a receptor-binding glycoprotein and trigger of fusion; its ectodomain is organized in an N-terminal domain carrying the receptor-binding sites and a C-terminal domain carrying the profusion domain, required for fusion but not receptor binding. gB and gH/gL execute fusion. To understand how the four glycoproteins cross-talk to each other, we searched for biochemical defined complexes in infected and transfected cells and in virions. Previously, interactions were detected in transfected whole cells by split green fluorescent protein complementation (Atanasiu, D., Whitbeck, J. C., Cairns, T. M., Reilly, B., Cohen, G. H., and Eisenberg, R. J. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 18718–18723; Avitabile, E., Forghieri, C., and Campadelli-Fiume, G. (2007) J. Virol. 81, 11532–11537); it was not determined whether they led to biochemical complexes. Infected cells harbor a gD-gH complex (Perez-Romero, P., Perez, A., Capul, A., Montgomery, R., and Fuller, A. O. (2005) J. Virol. 79, 4540–4544). We report that gD formed complexes with gB in the absence of gH/gL and with gH/gL in the absence of gB. Complexes with similar composition were formed in infected and transfected cells. They were also present in virions prior to entry and did not increase at virus entry into the cell. A panel of gD mutants enabled the preliminary location of part of the binding site in gD to gB to the amino acids 240–260 portion and downstream with Thr304-Pro305 as critical residues and of the binding site to gH/gL at the amino acids 260–310 portion with Pro291-Pro292 as critical residues. The results indicate that gD carries composite-independent binding sites for gB and gH/gL, both of which are partly located in the profusion domain.  相似文献   

13.
We have established that HCMV acts as a specific ligand engaging and activating cellular integrins on monocytes. As a result, integrin signaling via Src activation leads to the functional activation of paxillin required for efficient viral entry and for the biological changes in monocytes needed for viral dissemination. These biological/molecular changes allow HCMV to use monocytes as “vehicles” for systemic spread and the establishment of lifelong persistence. However, it remains unresolved how HCMV specifically induces this observed monocyte activation. It was previously demonstrated that the HCMV gH/gL/UL128-131 glycoprotein complex facilitates viral entry into biologically relevant cell types. Nevertheless, the mechanism by which the gH/gL/UL128-131 complex promotes this process is unknown. We now show that only HCMV virions possessing the gH/gL/UL128-131 complex are capable of activating integrin/Src/paxillin-signaling in monocytes. In fibroblasts, this signaling is reversed, such that virus lacking the gH/gL/UL128-131 complex is the only virus able to induce the paxillin activation cascade. The presence of the gH/gL/UL128-131 complex also may have an inhibitory effect on integrin-mediated signaling pathway in fibroblasts. Furthermore, we demonstrate that the presence of the gH/gL/UL128-131 complex on the viral envelope, through its activation of the integrin/Src/paxillin pathway, is necessary for efficient HCMV internalization into monocytes and that appropriate actin and dynamin regulation is critical for this entry process. Importantly, productive infection in monocyte-derived macrophages was seen only in cells exposed to HCMV expressing the gH/gL/UL128-131 complex. From our data, the HCMV gH/gL/U128-131 complex emerges as the specific ligand driving the activation of the receptor-mediated signaling required for the regulation of the actin cytoskeleton and, consequently, for efficient and productive internalization of HCMV into monocytes. To our knowledge, our studies demonstrate a possible molecular mechanism for why the gH/gL/UL128-131 complex dictates HCMV tropism and why the complex is lost as clinical isolates are passaged in the laboratory.  相似文献   

14.
Standard vectors for high-level expression elicited undetectable levels of the gH and gL glycoproteins of rhesus monkey rhadinovirus (RRV) following transient-transfection assays under a variety of conditions. These same vectors and conditions yielded high levels of RRV gB expression. Unlike other genes of RRV, both the gH and gL genes were noted to have a highly aberrant, suboptimal codon usage. High levels of RRV gH and gL expression were achieved by two alternative means: codon optimization or coexpression of RRV ORF57. The failure of gH and gL to be expressed in the absence of ORF57 and in the absence of codon optimization could not be explained by the failure of RNA to egress from the nucleus. Rather, the defect in gH and gL expression appeared to be cytoplasmic in nature. It is not clear at the present time whether the aberrant codon usage for gH and gL of RRV is an intentional regulatory strategy used by the virus or whether it is driven by some external force, such as intrinsic immunity. In any event, our results indicate that the need of ORF57 for gH and gL expression can be circumvented by codon optimization, that RRV ORF57 acts principally to allow translation of gH and gL RNA in the cytoplasm, and that this activity of ORF57 is related in some way to the aberrant codon usage of the gH and gL RNAs.  相似文献   

15.
16.
The Bcl-2 protein Bax normally resides in the cytosol, but during apoptosis it translocates to mitochondria where it is responsible for releasing apoptogenic factors. Using anoikis as a model, we have shown that Bax translocation does not commit cells to apoptosis, and they can be rescued by reattachment to extracellular matrix within a specific time. Bax undergoes an N-terminal conformational change during apoptosis that has been suggested to regulate conversion from its benign, cytosolic form to the active, membrane bound pore. We now show that the Bax N-terminus regulates commitment and mitochondrial permeabilisation, but not the translocation to mitochondria. We identify Proline 13 within the N-terminus of Bax as critical for this regulation. The subcellular distribution of Proline 13 mutant Bax was identical to wild-type Bax in both healthy and apoptotic cells. However, Proline 13 mutant Bax induced rapid progression to commitment, mitochondrial permeabilisation and death. Our data identify changes in Bax controlling commitment to apoptosis that are mechanistically distinct from those controlling its subcellular localisation. Together, they indicate that multiple regulatory steps are required to activate the proapoptotic function of Bax.  相似文献   

17.
Hemoglobin was spin labeled at β-93(F9)-cysteine with N-oxy-2,2,6,6-tetramelhylpiperidinylmaleimide. The inward shift of the high-field hyperfine line (ΔHXXX) position in the ESR spectra of the Spin label was measured aS a function of temperature. One can expect that an abrupt change in the microenvironment around the tightly bound spin label will be reflected in the function ΔHXXX(T) as a discontinuity (break point). This was shown for aquo-, azido-. nitro- and oxyhemoglobin derivatives. The presented results suggest that the microenvironment around the tightly hound spin label in those methemoglobin derivatives that exhibit the mixed-spin state of the heme iron is prone to an abrupt change above a certain ligand-specific temperature. The change in microenvironment of the spin label is probably due to a temperature-dependent change in the tertiary structure of the protein.  相似文献   

18.
Human cytomegalovirus (HCMV) produces the following two gH/gL complexes: gH/gL/gO and gH/gL/UL128-131. Entry into epithelial and endothelial cells requires gH/gL/UL128-131, and we have provided evidence that gH/gL/UL128-131 binds saturable epithelial cell receptors to mediate entry. HCMV does not require gH/gL/UL128-131 to enter fibroblasts, and laboratory adaptation to fibroblasts results in mutations in the UL128-131 genes, abolishing infection of epithelial and endothelial cells. HCMV gO-null mutants produce very small plaques on fibroblasts yet can spread on endothelial cells. Thus, one prevailing model suggests that gH/gL/gO mediates infection of fibroblasts, while gH/gL/UL128-131 mediates entry into epithelial/endothelial cells. Most biochemical studies of gO have involved the HCMV lab strain AD169, which does not assemble gH/gL/UL128-131 complexes. We examined gO produced by the low-passage clinical HCMV strain TR. Surprisingly, TR gO was not detected in purified extracellular virus particles. In TR-infected cells, gO remained sensitive to endoglycosidase H, suggesting that the protein was not exported from the endoplasmic reticulum (ER). However, TR gO interacted with gH/gL in the ER and promoted export of gH/gL from the ER to the Golgi apparatus. Pulse-chase experiments showed that a fraction of gO remained bound to gH/gL for relatively long periods, but gO eventually dissociated or was degraded and was not found in extracellular virions or secreted from cells. The accompanying report by P. T. Wille et al. (J. Virol., 84:2585-2596, 2010) showed that a TR gO-null mutant failed to incorporate gH/gL into virions and that the mutant was unable to enter fibroblasts and epithelial and endothelial cells. We concluded that gO acts as a molecular chaperone, increasing gH/gL ER export and incorporation into virions. It appears that gO competes with UL128-131 for binding onto gH/gL but is released from gH/gL, so that gH/gL (lacking UL128-131) is incorporated into virions. Thus, our revised model suggests that both gH/gL and gH/gL/UL128-131 are required for entry into epithelial and endothelial cells.Human cytomegalovirus (HCMV) infects many different cell types in vivo, including epithelial and endothelial cells, fibroblasts, monocyte-macrophages, smooth muscle cells, dendritic cells, hepatocytes, neurons, glial cells, and leukocytes (reviewed in references 5, 30, 38, and 45). In the laboratory, HCMV is normally propagated in primary human fibroblasts because most other cell types yield low titers of virus. Commonly studied laboratory strains, such as AD169, were propagated extensively in fibroblasts, and this was accompanied by deletions or mutations in a cluster of 22 genes known as ULb′ (6). These mutations were correlated with the inability to infect other cell types, including endothelial and epithelial cells and monocyte-macrophages. Targeted mutagenesis of three of the ULb′ genes, UL128, UL130, and UL131, abolished infection of endothelial cells, transmission to leukocytes, and infection of dendritic cells (13, 15). Restoration of the UL128-131 genes in laboratory strains of HCMV strains restored the capacity to infect endothelial and epithelial cells and other cells (15, 52).The UL128, UL130, and UL131 proteins assemble onto the extracellular domain of HCMV gH/gL (1, 42, 53). For all herpesviruses, gH/gL complexes mediate entry into cells (12, 33, 39), suggesting that gH/gL/UL128-131 might participate in the entry mechanism. Indeed, we demonstrated that gH/gL/UL128-131 mediates entry into epithelial and endothelial cells by using the fusogenic agent polyethylene glycol to force entry of HCMV UL128-131 mutants into these cell types (41). This was consistent with reports that UL128-, UL130-, and UL131-specific antibodies blocked the capacity of HCMV to infect epithelial and endothelial cells but not fibroblasts (1, 53). Furthermore, expression of gH/gL/UL128-131, but not gH/gL or gB, in epithelial cells interfered with HCMV infection, consistent with saturable gH/gL/UL128-131 receptors (40). Expression of all five proteins was necessary so that the gH/gL/UL128-131 complexes were exported from the endoplasmic reticulum (ER) and could function (40-42, 53). Together, these data suggested that gH/gL/UL128-131 mediates entry into epithelial/endothelial cells but is not required for entry into fibroblasts. By extension, it was reasonable to propose that other forms of gH/gL might facilitate the entry into fibroblasts.The laboratory HCMV strain AD169 is known to express a second gH/gL complex containing glycoprotein O (gO) (21-23, 53). In cells infected with a recombinant AD169 in which the UL131 mutation was repaired, gH/gL/gO complexes were separate from gH/gL/UL128-131 complexes, i.e., gO was not detected following immunoprecipitation (IP) with UL128- and UL130-specifc antibodies, and gO-specific antibodies did not precipitate UL128 and UL130 (53). AD169 and Towne gO mutants produce small plaques on fibroblast monolayers and low titers of virus, supporting an important, although not essential, role for gH/gL/gO in virus replication in fibroblasts (11, 19). AD169 does not infect endothelial and epithelial cells, so AD169 gO mutants were not tested on these cells. Jiang et al. described a gO-null mutant derived from an endotheliotropic HCMV strain, TB40/E (27). The TB40/E gO-null mutant spread normally on endothelial cells, suggesting that gO or gH/gL/gO is less important for infection and spread in these cells. Given that the role of gH/gL in entry is highly conserved among the herpesviruses, it seemed likely that gH/gL/gO might be involved in entry into fibroblasts. Consistent with this notion, Paterson et al. showed that anti-gO antibodies decreased fusion from without caused by infection of cells with HCMV AD169 (37). These observations supported our working model in which gH/gL/UL128-131 mediates entry into epithelial and endothelial cells, while gH/gL/gO mediates entry into fibroblasts. There is also the possibility that gH/gL (lacking gO and UL128-131) might be incorporated into the virion envelope, although there is presently no direct evidence for this. Any gH/gL detected biochemically might result from dissociation of gO or UL128-131 during sample preparation and analysis. gH/gL expressed without other HCMV proteins was retained in the ER (42), arguing against incorporation into the virion.Other herpesviruses, e.g., Epstein-Barr virus, human herpesvirus 6 (HHV-6), and HHV-7, use different forms of gH/gL to enter different cell types via different pathways (25, 34, 43). Similarly, HCMV entry into fibroblasts occurs by fusion at the plasma membrane at a neutral pH and does not require gH/gL/UL128-131 (7), whereas entry into epithelial and endothelial cells involves endocytosis and low pH-dependent fusion and requires gH/gL/UL128-131 (41).All of the biochemical analyses of gO in terms of binding to gH/gL and intracellular transport have involved fibroblast-adapted strain AD169 (21-23, 31, 53). These studies indicated that gO is a 110- to 125-kDa glycoprotein encoded by the UL74 gene (22). Glycosidase digestion experiments demonstrated that the gO polypeptide chain is ∼62 to 65 kDa (21-23, 53). Pulse-chase studies showed that gH/gL assembles in the ER as a disulfide-linked heterodimer (28) that subsequently binds to, and establishes disulfides with, gO (22, 23). The 220-kDa immature gH/gL/gO trimer is initially sensitive to endoglycosidase H (endo H), which removes immature N-linked oligosaccharides from glycoproteins present in the ER (22, 23). Transport of gH/gL/gO to the Golgi apparatus is associated with processing of N-linked oligosaccharides to mature forms that resist endo H. Also associated with transport to the Golgi apparatus is the addition of O-linked oligosaccharides and phosphorylation, increasing the molecular weight of gO (after reduction) to 125 to 130 kDa and that of the gH/gL/gO complex to 240 to 260 kDa (22, 23, 29). It is the mature glycoprotein complex, previously known as gCIII, that is trafficked to HCMV assembly compartments for incorporation into the virion envelope (22, 23, 29).In addressing the function of gO, it is important to recognize that AD169 has adapted to replication in fibroblasts, losing expression of UL131 and failing to assemble gH/gL/UL128-131 complexes (6) (15). There seems to be strong pressure to mutate UL128-131, because clinical strain Merlin acquired a UL128 mutation within 5 passages on fibroblasts (2). It is also reasonable to suggest that fibroblast adaptation includes changes in gO. The gO genes (UL74) of several laboratory and clinical strains and clinical isolates are highly variable (up to 25% of amino acids) (10, 35, 37, 47). However, it is important to note that AD169-derived UL131-repair virus can infect epithelial and endothelial cells (52). Thus, if AD169 gO is important for infection of these cells, then gO must be functionally normal in this regard. These differences in laboratory versus clinical HCMV prompted us to characterize the gO molecule expressed by the HCMV strain TR. HCMV TR is a clinical isolate that was stabilized in the form of a bacterial artificial chromosome (BAC) after very limited passage in fibroblasts (35, 41). HCMV TR expresses gH/gL/UL128-131 (42) and infects epithelial and endothelial cells (41) and monocyte-macrophages well (D. Streblow and J. Nelson, unpublished results).Here, we report our biochemical and cell trafficking analyses of the TR gO protein. We were surprised to find that TR gO was not present in extracellular virus particles. In contrast, gO was detected in extracellular AD169 particles, consistent with previous findings (22). TR gO expressed either in HCMV-infected cells or by using nonreplicating Ad vectors (expressed without other HCMV proteins) was largely retained in the ER. Coexpression of TR gO with gH/gL promoted transport of gH/gL beyond the ER, and gO was slowly lost from gH/gL complexes but not secreted from cells and not observed in extracellular virus particles. Thus, TR gO acts as a chaperone. Consistent with this, in the accompanying paper by Wille et al. (54), a TR gO-null mutant was described that secreted extracellular particles containing markedly reduced quantities of gH and gL. The gO mutant failed to enter fibroblasts and also epithelial and endothelial cells. Together, these results suggest that it is gH/gL, not gH/gL/gO, which is incorporated into HCMV TR virions. It appears that gH/gL is required for entry into fibroblasts, and both gH/gL and gH/gL/UL128-131 are required for entry into epithelial and endothelial cells.  相似文献   

19.
Dematin is an actin binding protein from the junctional complex of the erythrocyte cytoskeleton. The protein has two actin binding sites and bundles actin filaments in vitro. This actin bundling activity is reversibly regulated by phosphorylation in the carboxyl terminal "headpiece" domain (DHP). DHP is a typical villin-type headpiece actin binding motif and contains a flexible N-terminal loop and an alpha-helical C-terminal subdomain that is phosphorylated at Ser74. The NMR structure of a Ser74-to-Glu mutant (DHPs74e) closely mimics the conformation of phosphorylated DHP. The negative charge at Ser74 does not alter the conformation of the C-terminal subdomain, but attracts the N-terminal loop toward the C terminus, changing the orientation of the N-terminal subdomain. NMR relaxation studies also indicate reduced mobility in the N-terminal loop in DHPs74e. Thus, phosphorylation in DHP serves as a switch controlling the conformational state of DHP and the actin bundling activity of dematin.  相似文献   

20.
Absorbance measurements performed with high molecular weight poly A at pH 8 show that the degree of single strand stacking present at high ionic strength is reduced at low ionic strengths. The salt dependence of the poly A conformation is assigned to an electrostatic repulsion between subsequent turns of the single strand “helix” structure. - Electric fields of 5 to 80 kV/cm induce an increase in the poly A absorbance consistent with a decrease in the ion concentration in the environment of the polymer. The increase of the absorbance is a linear function of the field strength suggesting that the conformation change is caused by a dissociation field effect. At increasing ionic strength, threshold values of the electric field strength have to be exceeded in order to induce measurable absorbance changes. - The time required for the conformation change decreases from about 2 μsec at 10−4 M ionic strength to about 0.3 μsec at high ionic strengths. At low ionic strengths the ion equilibration may influence the rate limiting step, whereas the arrangement of the nucleotide residues into the ordered structure is rate limiting at high ionic strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号