首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cassava green mite, Mononychellus tanajoa (Bondar), is an exotic pest in Africa and is the target of a classical biological control programme. Field data from the Neotropics, where it is indigenous, are presented for the first time, charting the variation in abundance of M. tanajoa over several seasons. This was highly variable, with a characteristic trough mid-year and a peak at the turn of the year. This pattern corresponded positively with rainfall levels, appearing to fit a phenology also characteristic of African studies, where rainfall at the start of the wet season promotes a leaf flush and so growth in M. tanajoa populations. Analyses implied some impact of leaf-inhabiting predatory mites (predominantly Neoseiulus idaeus Denmark & Muma) and a considerable impact of the fungal pathogen Neozygites floridana Fisher on M. tanajoa populations. This pathogen was not observed in the host population for several (generally dry) periods implying survival outside the host, perhaps as resting spores. This is a particularly desirable characteristic of a biological control agent. It is therefore proposed that N. floridana might be of particular use in drier cassava-growing areas where rainfall at the outset of the wet season is not sufficiently intense to cause heavy M. tanajoa mortality but may be sufficient to stimulate epizootics of the fungal pathogen, protecting the flush of new cassava growth.  相似文献   

2.
To determine the impact of an acarine predator guild on the abundance of a shared herbivorous prey and its principal exotic predator, a series of surveys were conducted in ca. 200 cassava fields in swamp and non-swamp areas in southwestern Benin, West Africa. For each field, the surveys provided data on the density of a pest arthropod, the cassava green mite Mononychellus tanajoa (Bondar), of an introduced and successfully established natural enemy, the apex-inhabiting predatory mite Typhlodromalus aripo DeLeon, and on occurrence of other predator species that inhabit the leaves and share the same prey. These other predators included one exotic species, Typhlodromalus manihoti Moraes, that is successfully established mainly in swamp areas, and two indigenous species, Euseius fustis (Pritchard and Baker) and Typhlodromalus saltus (Denmark and Matthysse), that are commonly found on cassava in Africa. Our aim was to assess the association between the density of M. tanajoa and that of T. aripo, the most successful predator in terms of establishment and abundance, and subsequently determine how this association was affected by the presence or absence of the other predator species. No obvious density-dependent relationship was found by inspecting the scattergrams of T. aripo versus M. tanajoa densities, but high T. aripo densities did not occur when M. tanajoa densities were low and--during the dry season in February--the densities of M. tanajoa steeply increased when T. aripo numbers were low. Given the establishment of T. aripo in all fields, the presence of other species of predatory mites (T. manihoti, both in swamp and non-swamp areas; T. saltus in absence--as well as presence--of T. manihoti in swamp areas; E. fustis in absence of T. manihoti in non-swamp areas) reduced the density of M. tanajoa by a factor 2-3. Thus in all these cases, the presence of an exotic or indigenous species of predatory mite in addition to T. aripo was associated with lower M. tanajoa density. The density of T. aripo was usually positively affected by the presence of other predator species except for T. saltus in presence of T. manihoti that negatively affected the density of T. aripo in swamp areas, an effect likely mediated by either intraguild predation or competition for food. Path analysis showed that indigenous phytoseiid species were more important in suppression of M. tanajoa populations in cassava fields than previously thought. We suggest that the lack of negative effects of the predator species complex is likely due to differential niche use by the various species which reduces interference among the predators. Manipulative experiments are, however, needed to provide details on the relative importance in M. tanajoa suppression by each species within this acarine predator guild.  相似文献   

3.
The fungus, Neozygitis cf. floridana is parasitic on the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) in South America and may be considered for classical biological control of cassava green mites in Africa, where cassava is an important subsistence crop, cassava green mites are an imported pest and specific natural enemies are lacking. Spider mites generally have a viscous structure of local populations, a trait that would normally hamper the spread of a fungus that is transmitted by the contact of susceptible hosts with the halo of capilliconidia surrounding an infectious host. However, if infected mites search and settle to produce capilliconidia on sites where they are surrounded by susceptible mites before becoming infectious, then the conditions for maximal transmission in a viscous host population are met. Because the ratio between spider mites and the leaf area they occupy is constant, parasite-induced host searching behaviour leads to a constant per capita transmission rate. Hence, the transmission rate only depends on the number of infectious hosts. These assumptions on parasite-induced host search and constant host density lead to a simple, analytically tractable model that can be used to estimate the maximal capacity of the fungus to decimate local populations of the cassava green mite. By estimating the parameters of this model (host density, per capita transmission rate and duration of infected and infectious state) it was shown that the fungal pathogen can reduce the population growth of M. tanajoa, but cannot drive local mite populations to extinction. Only when the initial ratio of infectious to susceptible mites exceeds unity or the effective growth rate of the mite population is sufficiently reduced by other factors than the fungus (e.g. lower food quality of the host plant, dislodgement and death by rain and wind and predation), will the fungal pathogen be capable of decimating the cassava green mite population. Under realistic field conditions, where all of these growth-reducing factors are likely to operate, there may well be room for effective control by the parasitic fungus. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
Populations of the phytoseiid predator Amblyseius(=Neoseiulus) idaeus (Denmark & Muma) from northeastern Brazil, have been successfully introduced into Benin, West Africa, as part of a classical biological control campaign to control the exotic cassava green mite Mononychellus tanajoa (Bondar). Monthly follow‐up surveys revealed the presence of A. idaeus in most release sites. Some populations have persisted for at least 18 months, including two cycles of potentially limiting wet and dry season conditions. In some sites A. idaeus has been the numerically dominant phytoseiid predator on cassava Manihot esculenta, where it is associated with the tetranychids M. tanajoa and Oligonychus gossypii Zacher. During periods of low M. tanajoa densities A. idaeus disappeared from cassava, but were found on weeds with O. gossypii until prey densities on cassava increased.  相似文献   

5.
The effects of prey mite suitability on several demographic characteristics of phytoseiid predators and the relationship of these effects to the potential of phytoseiid predators to control herbivorous mite populations are well documented. Evidence has also accumulated in the last 20 years demonstrating that phytoseiid predators utilize herbivorous prey mite-induced plant volatiles as olfactory cues in locating their herbivorous mite prey. but less well established is the predictability of reproductive success from the ability of the predators to utilize olfactory cues to locate their prey, and how these processes are related to the success of the predators as biological control agents of the herbivorous mite. In this study, we determined in laboratory no choice experiments, the development, survivorship and fecundity of the two neotropical phytoseiid predators Typhlodromalus manihoti Moraes and T. aripo DeLeon when feeding on three herbivorous mites, including the key prey species Mononychellus tanajoa (Bondar), and the two alternative prey species Oligonychus gossypii (Zacher) and Tetranychus urticae (Koch). Intrinsic rate of increase (rm) of T. aripo was 2.1 fold higher on M. tanajoa as prey compared with T. urticae as prey, while it was almost nil on O. gossypii. For T. manihoti, rm was 2.3 fold higher on M. tanajoa as prey compared with O. gossypii as prey, while reproduction was nil on T. urticae. An independent experiment on odor-related prey preference of the two predator species (Gnanvossou et al. 2002) showed that T. manihoti and T. aripo preferred odors from M. tanajoa-infested leaves to odors from O. gossypii-infested leaves. Moreover, both predator species preferred odors from M. tanajoa-infested leaves over those from T. urticae-infested leaves. As reported here, life history of the two predatory mites matches odor-related prey preference if the key prey species is compared to the two inferior prey species. The implications of our findings for the persistence of T. manihoti and T. aripo and biological control of M. tanajoa in the cassava agroecosystem in Africa are discussed.  相似文献   

6.
The cassava green mite, Mononychellus tanajoa, is a key pest of cassava, Manihot esculenta Crantz (Euphorbiaceae), and it may be kept in check by naturally occurring predatory mites of the family Phytoseiidae. In addition to predatory mites, abiotic factors may also contribute to regulate pest mite populations in the field. Here, we evaluated the population densities of both M. tanajoa and the generalist predatory mite Euseius ho DeLeon (Acari: Phytoseiidae) over the cultivation cycle (11 months) of cassava in four study sites located around the city of Miranda do Norte, Maranhão, Brazil. The abiotic variables rainfall, temperature and relative humidity were also recorded throughout the cultivation cycle of cassava. We determined the relative importance of biotic (density of E. ho) and abiotic (rainfall, temperature and relative humidity) factors to the density of M. tanajoa. The density of M. tanajoa increased whereas the density of E. ho remained constant throughout time. A hierarchical partitioning analysis revealed that most of the variance for the density of M. tanajoa was explained by rainfall and relative humidity followed by E. ho density and temperature. We conclude that abiotic factors, especially rainfall, were the main mechanisms driving M. tanajoa densities.  相似文献   

7.
There is an increasing awareness that vegetation diversity can affect herbivore and natural enemy abundance and that plants can play a major role in directly manipulating natural enemy abundance for protection against herbivore attacks. Using data from cassava fields, we aimed at (i) testing the capacity of the predatory mite Typhlodromalus aripo to control the herbivorous mite Mononychellus tanajoa in a chemical exclusion trial; and (ii) testing, based on the differential preference by T. aripo for cassava cultivars, how combinations of two morphologically different cassava cultivars with differential suitability to the predator can improve its population densities on the non‐favourable cultivar, thereby reducing M. tanajoa densities with subsequent increases in cassava yield. The study was conducted in a cassava field in Benin, West Africa. The experiments confirmed that T. aripo effectively suppresses M. tanajoa populations on both cultivars and showed, in the no‐predator‐exclusion experiments, that cultivar combinations have significant effects on M. tanajoa and T. aripo densities. Indeed, T. aripo load on the non‐preferred cultivar was lowest in subplots where the proportion of T. aripo‐preferred cultivar was also low, while, and as expected, M. tanajoa load on the non‐preferred cultivar showed decreasing trends with increasing T. aripo densities. The possible mechanisms by which cultivar mixing could increase predator load on the non‐favourable cultivar were discussed. Our data showed that appropriate cultivar combinations effectively compensate for morphologically related differences in natural enemy abundance on a normally predator‐deficient cultivar, resulting in lower pest densities on the non‐favourable cultivar. In practical terms, this strategy could, in part, enhance adoption of cultivars that do not support sufficient levels of natural enemies for pest control.  相似文献   

8.
The biological control potential of Hirsutella thompsonii Fisher (Deuteromycetes: Monilianes) was compared with that of Neoseiulus teke Pritchard and Baker (Acari: Phytoseiidae) for cassava mite, Mononychellus tanajoa (Acari:Tetranychidae), suppression. Mite infestation levels (egg and mite motile counts and damage rating) were lower on H. thompsonii- and N. teke- treated plants than on plants sprayed with water. N. teke reduced the pest attack to a comparable level to that of H. thompsonii . In the field, applications of aqueous suspensions of H. thompsonii at concentrations of 1.2 1011 conidia/ha (CPH) and 6.0 1010 CPH significantly lowered mite infestation on a number of recording dates. As rainfall levels increased, mite infestation and the number of cadavers on the leaves declined. The study showed that H. thompsonii has promise for controlling M. tanajoa when the fungus is applied in harmony with other natural mortality factors.  相似文献   

9.
Most fungal pathogens lack the capacity to search for their host but rather develop sit-and-wait strategies that favour contact with them. The success of these strategies depends upon the interactions of the pathogen with its host, the host plant and the environmental conditions, which altogether determine its transmissibility. Given the limited success that has characterized application of sustainable microbial control, particularly using Entomophthorales, interaction studies have been conducted with the entomophthoralean fungus Neozygites tanajoae, pathogenic to the cassava green mite (CGM), Mononychellus tanajoa, to help understand differences observed between laboratory and field performances of this pathogen. Reciprocal pathogen-host interactions as well as tritrophic interactions involving the host plant were studied. It was found that herbivory triggers the release of volatiles that promote sporulation of isolates of N. tanajoae, whereas the host mite avoids haloes of spores of this pathogen. However, the host mite does not avoid the pathogen when inside the mummified fungus-killed cadaver. The status of microbial control of CGM in Africa is reviewed and implications of these interactions are discussed for prospective application of microbial control using Entomophthorales.  相似文献   

10.
11.
Both prey density and developmental stage of pests and natural enemies are known to influence the effectiveness of biological control. However, little is known about the interaction between prey density and population structure on predation and fecundity of generalist predatory mites. Here, we evaluated the functional response (number of prey eaten by predator in relation to prey density) of adult females and nymphs of the generalist predatory mite Euseius concordis to densities of different developmental stages of the cassava green mite Mononychellus tanajoa, as well as the fecundity of adult females of the predator. We further assessed the instantaneous rate of increase, based on fecundity and mortality, of E. concordis fed on eggs, immatures and adults of M. tanajoa. Overall, nymphs and adults of E. concordis feeding on eggs, immatures and females of M. tanajoa had a type III functional response curve suggesting that the predator increased prey consumption rate as prey density increased. Both nymphs and adult females of the predator consumed more eggs than immatures of M. tanajoa from the density of 20 items per leaf disc onwards, revealing an interaction between prey density and developmental stage in the predatory activity of E. concordis. In addition, population growth rate was higher when the predator fed on eggs and immatures in comparison with females. Altogether our results suggest that E. concordis may be a good candidate for the biological control of M. tanajoa populations. However, the efficiency of E. concordis as a biological control agent of M. tanajoa is contingent on prey density and population structure.  相似文献   

12.
The mite-pathogenic fungus Neozygites floridana Fisher (Entomophthorales: Neozygitaceae) is considered to have potential for the biological control of the cassava green mite, Mononychellus tanajoa (Bondar). However, its activity is sporadic and laboratory data suggest a strong dependence on night-time saturation deficits for transmission. We report on an epizootic of this fungus in a mite population in northeastern Brazil. During the epizootic, host populations appeared to be limited by a combination of the pathogen and a predatory mite Neoseiulus idaeus (Acari: Phytoseiidae). When temperatures increased, the epizootic finished and the host population began to grow. Abiotic conditions could not explain the variation in host mortality following pickup of infective propagules in this epizootic. However, night-time saturation did help to explain the variation in transmission from infective cadavers to newly killed hosts. This supports laboratory observations that horizontal transmission between hosts is determined mainly by saturation deficits, while the process of infection is little affected by abiotic conditions. A further field observation was the near-absence of resting spores in dead mites (ca. 0.1% of cadavers), suggesting that the pathogen population was unsuccessful in producing inoculum to infect future M. tanajoa populations. The implications are that this pathogen will only be effective as a biological control agent in periods of high relative humidity, and establishment in new areas may be limited by resting spore formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Gnanvossou D  Hanna R  Dicke M 《Oecologia》2003,135(1):84-90
Carnivorous arthropods exhibit complex intraspecific and interspecific behaviour among themselves when they share the same niche or habitat and food resources. They should simultaneously search for adequate food for themselves and their offspring and in the meantime avoid becoming food for other organisms. This behaviour is of great ecological interest in conditions of low prey availability. We examined by means of an olfactometer, how volatile chemicals from prey patches with conspecific or heterospecific predators might contribute to shaping the structure of predator guilds. To test this, we used the exotic predatory mites Typhlodromalus manihoti and T. aripo, and the native predatory mite Euseius fustis, with Mononychellus tanajoa as the common prey species for the three predatory mite species. We used as odour sources M. tanajoa-infested cassava leaves or apices with or without predators. T. manihoti avoided patches inhabited by the heterospecifics T. aripo and E. fustis or by conspecifics when tested against a patch without predators. Similarly, both T. aripo and E. fustis females avoided patches with con- or heterospecifics when tested against a patch without predators. When one patch contained T. aripo and the other T. manihoti, females of the latter preferred the patch with T. aripo. Thus, T. manihoti is able to discriminate between odours from patches with con- and heterospecifics. Our results show that the three predatory mite species are able to assess prey patch profitability using volatiles. Under natural conditions, particularly when their food sources are scarce, the three predatory mite species might be involved in interspecific and/or intraspecific interactions that can substantially affect population dynamics of the predators and their prey.  相似文献   

14.
A survey of the pathogenic fungi associated with mites on cassava in Benin, West Africa, revealed both geographical and seasonal variation in the presence of Neozygites cf. floridana (Weiser and Muma) and Hirsutella thompsonii Fisher on Mononychellus tanajoa (Bondar) and Oligonychus gossypii (Zacher). Few dead and infected mites were found during the dry season, regardless of vegetation zone. In three of 30 surveyed sites, N. floridana was found infecting 1% of the dead M. tanajoa and 2% of the dead O. gossypii, while H. thompsonii was observed infecting 20% of the dead M. tanajoa in a single site. The frequency of sites having infected mites during the wet season was 3.5 times greater than that seen during the dry season. N. floridana infected 10% of the dead M. tanajoa and 19% of the dead O. gossypii on young leaves. Mites infected with N. floridana were found either in the coastal Southern Forest Mosaic (SFM) or in the Northern Guinea Savanna vegetation zones. N. floridana was rare in the low mite densities associated with mature leaves. H. thompsonii was found on 19% and 29% of the dead M. tanajoa on young and mature leaves respectively. All M. tanajoa infected with H. thompsonii on young leaves and mature leaves (75%) were found in the SFM. A single M. tanajoa was the only infected mite found in the Southern Guinea Savanna. Relatively few O. gossypii were infected with H. thompsonii. N. floridana and H. thompsonii were found together in three sites, but never on the same host. Phytoseiids were never found infected with either pathogen. In a regression analysis, the number of dead mites was significantly estimated from the total number of mites for both species, regardless of leaf age. The numbers of dead M. tanajoa on mature leaves were also estimated from the proportion infected with H. thompsonii. The numbers of infected mites on young leaves were estimated from their association with the SFM for M. tanajoa infected with H. thompsonii, and from total mites for O. gossypii infected with N. floridana. On mature leaves, infected mite numbers were estimated from the numbers of dead M. tanajoa infected with H. thompsonii. The merit of introducing more virulent or better adapted isolates of N. floridana to control M. tanajoa in Africa is discussed.  相似文献   

15.
Virulence of entomopathogens is often measured at the individual level using a single host individual or a group of host individuals. To what extent these virulence assessments reflect the impact of an entomopathogen on their host in the field remains largely untested, however. A methodology was developed to induce epizootics of the cassava green mite fungal pathogen Neozygites tanajoae under controlled conditions to evaluate population-level virulence of two (one Beninese and one Brazilian) isolates of the entomopathogen—which had shown similar individual-level virulence but different field impacts. In unrepeated separate experiments we inoculated mite-infested potted cassava plants with either 50 or 25 live mites (high and low inoculum) previously exposed to spores of N. tanajoae and monitored the development of fungal infections for each isolate under the same conditions. Both isolates caused mite infections and an associated decline in host mite populations relative to the control (without fungus) in all experiments, but prevalence of the fungus varied with isolate and increased with inoculum density. Peak infection levels were 90% for the Beninese isolate and 36% for the Brazilian isolate at high inoculum density, and respectively 17% and 25% at low inoculum density. We also measured dispersal from inoculated plants and found that spore dispersal increased with host infection levels, independent of host densities, whereas mite dispersal varied between isolates. These results demonstrate that epizootiology of N. tanajoae can be studied under controlled conditions and suggest that virulence tests at the population level may help to better predict performance of fungal isolates than individual-level tests.  相似文献   

16.
Differences in the feeding habits between phytophagous and predatory species can determine distinct ecological interactions between mites and their host plants. Herein, plant–mite networks were constructed using available literature on plant-dwelling mites from Brazilian natural vegetation in order to contrast phytophagous and predatory mite networks. The structural patterns of plant–mite networks were described through network specialization (connectance) and modularity. A total of 187 mite species, 65 host plant species and 646 interactions were recorded in 14 plant–mite networks. Phytophagous networks included 96 mite species, 61 host plants and 277 interactions, whereas predatory networks contained 91 mite species, 54 host plants and 369 interactions. No differences in the species richness of mites and host plants were observed between phytophagous and predatory networks. However, plant–mite networks composed of phytophagous mites showed lower connectance and higher modularity when compared to the predatory mite networks. The present results corroborate the hypothesis that trophic networks are more specialized than commensalistic networks, given that the phytophagous species must deal with plant defenses, in contrast to predatory mites which only inhabit and forage for resources on plants.  相似文献   

17.
To improve biocontrol of the cassava green mite, Mononychellus tanajoa, a series of screenhouse experiments were conducted on cassava to determine the effects of single and combined releases of the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae on the suppression of M. tanajoa. We showed that, separately or in combination, T. aripo and N. tanajoae significantly reduced M. tanajoa populations. Moreover, combined release of T. aripo and N. tanajoae on the same cassava plants improved M. tanajoa control. However, our data suggest between T. aripo and N. tanajoae an asymmetric competition that significantly affected N. tanajoae only. This interference is indirect, probably mediated by their common prey or host mite, M. tanajoa since N. tanajoae is not pathogenic to T. aripo. We conclude that adding N. tanajoae to T. aripo populations in Africa would not negatively affect T. aripo and would further promote biocontrol of M. tanajoa.  相似文献   

18.
Neozygites tanajoae has recently been described as a new fungal pathogen distinct from Neozygites floridana. This pathogen is currently being used as a classical biological control agent against the cassava green mite, Mononychellus tanajoa (Bondar), in Africa. Neozygites tanajoae is a particularly fastidious species, and in vitro cultures of isolates from Brazil and Africa have only recently been established. In this study, the efficacy of several cryoprotectants at different exposure times, cooling rates, and warming rates for protecting hyphal bodies of N. tanajoae during cryopreservation was investigated. A protocol for preservation of cultures of N. tanajoae at ultra-low temperatures of -80 degrees C or -196 degrees C, using 1% trehalose + 2% dimethyl sulfoxide as cryoprotective agents, is described in detail. In this study, we demonstrate that N. tanajoae differs remarkably from N. floridana (isolates ARSEF 662 and ARSEF 5376) in the ability to withstand the stress of cold temperature (4 degrees C) and cryopreservation. In vitro cultures of the 2 N. floridana isolates remained viable at 4 degrees C for up to 47 d; however, cultures of N. tanajoae did not survive this temperature for 4 d. Cryopreservation methods successful for N. tanajoae isolates are not suitable for N. floridana and are unusual in comparison to those for many fungi.  相似文献   

19.
Insect pests and phytophagous mites cause a considerable loss to tropical root crops in the field. Major pests include the sweet potato weevil Cylas puncticollis, cassava mealybug Phenacoccus manihoti, cassava green spider mite Mononychellus tanajoa, yam beetle Heteroligus meles, and taro hornworm Hippotion celerio. Field and laboratory evaluation experiments indicate that entomopathogenic microorganisms may be adequately used in the management of insect and mite pests in root crops. The highest promise probably lies with fungal pathogens (Beauvaria bassiana, Hirsutella thompsonii, Metarhizium anisopliae, Nomuraea rileyi, Entomophthora thaxteriana, and E. parvispora), but bacterial (Bacillus thuringiensis), microsporidian (Nosema locustae) nematode (Steinernema feltiae) and even viral (Baculoviruses) pathogens may be exploited in an integrated pest management programme of tropical root crop pests.  相似文献   

20.
In Africa, Typhlodromalus manihoti and T. aripo, two introduced predators of the cassava green mite Mononychellus tanajoa, occupy different parts of cassava foliage. In the present study, niche use by these two predators, as mediated by prey-induced infochemicals, was investigated. In response to prey feeding damage, cassava plant parts emit volatile blends, that attract phytoseiidae predators. When given a choice between old cassava leaves infested with M. tanajoa and either apices or young cassava leaves infested with M. tanajoa, T. aripo displayed a marked preference for odors emitted from either infested apices or infested young leaves over infested old leaves but showed no preference for odors from apices versus young leaves, all infested with M. tanajoa. Typhlodromalus manihoti did not discriminate between volatiles from the three infested cassava plant parts. Our data show that T. aripo uses differences in volatile blends released by infested cassava plant parts and restricts its fundamental niche to a realized niche, which enables coexistence with its competitor T. manihoti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号