首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Moor N  Lavrik O  Favre A  Safro M 《Biochemistry》2003,42(36):10697-10708
The interaction of human phenylalanyl-tRNA synthetase, a eukaryotic prototype with an unknown three-dimensional structure, with the tRNA(Phe) acceptor end was studied by s(4)U-induced affinity cross-linking with human tRNA(Phe) derivatives site-specifically substituted at the single-stranded 3' end. Two different subunits of the enzyme bind two adjacent nucleotides of the tRNA(Phe) 3' end: nucleotide 76 is associated with the catalytic alpha subunit, while nucleotide 75 is in contact with the beta subunit. The binding mode is similar to that revealed previously in structural and affinity cross-linking studies of the prokaryotic Thermus thermophilus phenylalanyl-tRNA synthetase. Our results suggest that the distinctive features of tRNA(Phe) acceptor end binding are conserved for the eukaryotic and prokaryotic tetrameric phenylalanyl-tRNA synthetases despite their significant differences in the domain composition of the beta subunits. The data from affinity cross-linking experiments with human phenylalanyl-tRNA synthetase complexed with small ligands (ATP and/or phenylalanine or a stable synthetic analogue of phenylalanyl adenylate) reveal that the location of the tRNA(Phe) acceptor end varies with the presence and nature of other substrates. The lack of substrate activity of human tRNA(Phe) substituted with s(4)U at the 3'-terminal position suggests that base-specific interactions of the terminal adenosine are critically important for a productive interaction. The conformational rearrangement of the tRNA 3' end induced by the other substrates and dictated by base-specific contacts of the terminal nucleotide is an additional means of ensuring the phenylalanylation specificity in both prokaryotic and eukaryotic systems.  相似文献   

2.
3.
4.
Different sites of the tRNA molecule influence the activity of the elongation factor Tu (EF-Tu) center for GTP hydrolysis [Parlato, G., Pizzano, R., Picone, D., Guesnet, J., Fasano, O., & Parmeggiani, A. (1983) J. Biol. Chem. 258, 995-1000]. Continuing these studies, we have investigated some aspects of (a) the effect of different tRNA(Phe) species, including Ac-Phe-tRNA(Phe) and 3'-truncated tRNA-CCA in the presence and absence of codon-anticodon interaction, and (b) the effect of occupation of the ribosomal P-site by different tRNA(Phe) species. Surprisingly, we have found that 3'-truncated tRNA can enhance the GTPase activity in the presence of poly(U), in contrast to its inhibitory effect in the absence of codon-anticodon interaction. Moreover, Ac-Phe-tRNA(Phe) was found to have some stimulatory effect on the ribosome EF-Tu GTPase in the presence of poly(U). These results indicate that under specific conditions the 3'-terminal end and a free terminal alpha-NH2 group are not essential for the stimulation of the catalytic center of EF-Tu; therefore, the same structure of the tRNA molecule can act as a stimulator or an inhibitor of EF-Tu functions, depending on the presence of codon-anticodon interaction and on the concentration of monovalent and divalent cations. EF-Tu-GTP does not recognize a free ribosomal P-site from a P-site occupied by the different tRNA(Phe) species. When EF-Tu acts as a component of the ternary complex formed with GTP and aa-tRNA, the presence of tRNA in the P-site strongly increases the GTPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The phosphorothioate footprinting technique was applied to the investigation of phosphate moieties in tRNA substrates involved in interactions with M1 RNA, the catalytic subunit of Escherichia coli RNase P. In general agreement with previous data, all affected sites were localized in acceptor stem and T arm. But the analyzed examples for class I (Saccharomyces cerevisiae pre-tRNA(Phe) with short variable arm) and class II tRNAs (E. coli pre-tRNA(Tyr) with large variable arm) revealed substantial differences. In the complex with pre-tRNA(Phe), protection was observed at U55, C56, and G57, along the top of the T loop in the tertiary structure, whereas in pre-tRNA(Tyr), the protected positions were G57, A58, and A59, at the bottom of the T loop. These differences suggest that the size of the variable arm affects the spatial arrangement of the T arm, providing a possible explanation for the discrepancy in reports about the D arm requirement in truncated tRNA substrates for eukaryotic RNase P enzymes. Enhanced reactivities were found near the junction of acceptor and T stem (U6, 7, 8 in pre-tRNA(Phe) and G7, U63, U64 in pre-tRNA(Tyr)). This indicates a partial unfolding of the tRNA structure upon complex formation with RNase P RNA.  相似文献   

6.
The functional roles of phenylalanine and ATP in productive binding of the tRNA(Phe) acceptor end have been studied by photoaffinity labeling (cross-linking) of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with tRNA(Phe) analogs containing the s(4)U residue in different positions of the 3'-terminal single-stranded sequence. Human and E. coli tRNA(Phe)s used as basic structures differ by efficiency of the binding and aminoacylation with the enzyme under study. Destabilization of the complex with human tRNA(Phe) caused by replacement of three recognition elements decreases selectivity of labeling of the alpha- and beta-subunits responsible for the binding of adjacent nucleotides of the CCA-end. Phenylalanine affects the positioning of the base and ribose moieties of the 76th nucleotide, and the recorded effects do not depend on structural differences between bacterial and eukaryotic tRNA(Phe)s. Both in the absence and presence of phenylalanine, ATP more effectively inhibits the PheRS labeling with the s(4)U76-substituted analog of human tRNA(Phe) (tRNA(Phe)-s(4)U76) than with E. coli tRNA(Phe)-s(4)U76: in the first case the labeling of the alpha-subunits is inhibited more effectively; the labeling of the beta-subunits is inhibited in the first case and increased in the second case. The findings analyzed with respect to available structural data on the enzyme complexes with individual substrates suggest that the binding of phenylalanine induces a local rearrangement in the active site and directly controls positioning of the tRNA(Phe) 3'-terminal nucleotide. The effect of ATP on the acceptor end positioning is caused by global structural changes in the complex, which modulate the conformation of the acceptor arm. The rearrangement of the acceptor end induced by small substrates results in reorientation of the 3'-OH-group of the terminal ribose from the catalytic subunit onto the noncatalytic one, and this may explain the unusual stereospecificity of aminoacylation in this system.  相似文献   

7.
The interaction of tRNA with 80 S ribosomes from rabbit liver was studied using biochemical as well as fluorescence techniques. Besides the canonical A and P sites, two additional sites were found which specifically bind deacylated tRNA. One of the sites is analogous to the E site of prokaryotic ribosomes, in that binding of tRNA is labile, does not depend on codon-anticodon interaction, does not protect the anticodon loop from solvent access, and requires the presence of the 3'-terminal adenosine of the tRNA. In contrast, the stability of the tRNA complex with the second site (S site) is high. tRNA binding to the S site is also codon-independent; nevertheless, the anticodon loop is shielded from solvent access. Removal of the 3'-terminal adenosine decreases the affinity of tRNA(Phe) for the S site approximately 50-fold. tRNA(Phe) is retained at the S site during translocation and through poly(Phe) synthesis. Thus, the S site does not seem to be an intermediate site for the tRNA during the elongation cycle. Rather, the tRNA bound to the S site may allosterically modulate the function of the ribosome.  相似文献   

8.
To estimate the effect of modified nucleotide-37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAK+YPhe and Phe-tRNAK-YPhe) with the A site of complex [70S.poly(U).deacylated tRNA(Phe) in the P site] was assayed at 0-20 degrees C. As comparisons with native Phe-tRNAK+YPhe showed, removal of the Y base decreased the association constant of Phe-tRNAK-YPhe and the complex by an order of magnitude at any temperature, and increased the enthalpy of their interaction by 23 kJ/mol. When the Y base was present in the anticodon loop of deacylated tRNA(Phe) bound to the P site of the 70S ribosome, twice higher affinity for the A site was observed for Phe-tRNAK-YPhe but not for Phe-tRNAK+YPhe. Thus, the modified nucleotide 3' of the Phe-tRNA(Phe) anticodon stabilized the codon-anticodon interaction both in the A and in the P sites of the 70S ribosome.  相似文献   

9.
O W Odom  B Hardesty 《Biochimie》1987,69(9):925-938
Fluorescence techniques were used to detect changes in the conformation of tRNA(Phe) that may occur during the peptidyl transferase reaction in which the tRNA appears to move between binding sites on ribosomes. Such a conformational change may be a fundamental part of the translocation mechanism by which tRNA and mRNA are moved through ribosomes. E. coli tRNA(Phe) was specifically labeled on acp3U47 and s4U8 or at the D positions 16 and 20. The labeled tRNAs were bound to ribosomes as deacylated tRNA(Phe) or AcPhe-tRNA. Changes in fluorescence quantum yield and anisotropy were measured upon binding to the ribosomes and during the peptidyl transferase reaction. In one set of experiments non-radiative energy transfer was measured between a coumarin probe at position 16 or 20 and a fluorescein attached to acp3U47 on the same tRNA(Phe) molecule. The results indicate that the apparent distance between the probes increases during deacylation of AcPhe-tRNA as a result of peptide bond formation. All of the results are consistent with but in themselves do not conclusively establish that tRNA undergoes a conformational change as well as movement during the peptidyl transferase reaction.  相似文献   

10.
Proton NMR studies are presented on the interaction of nonaminoacylated yeast tRNAPhe and elongation factor Tu X GTP from Bacillus stearothermophilis. From experiments in which transfer of magnetization is observed between proton spins of tRNA and the protein, it is concluded that complex formation takes place. Amino acid residues of the protein come into close contact with the base pair A5U68 and/or U52A62 of the acceptor T psi C limb of the tRNA molecule. From the line broadening of tRNA resonances, associated with complex formation, an association constant of 10(3)-10(4) M-1 is estimated. The NMR experiments do not monitor a significant conformational change of the tRNA molecule upon interaction with the protein. However, at times long after the onset of complex formation, spectral changes indicate that the upper part of the acceptor helix becomes distorted.  相似文献   

11.
ms2i6A deficiency enhances proofreading in translation.   总被引:4,自引:0,他引:4  
The hypermodified base 2-methylthio-N6-isopentenyladenosine (ms2i6A) at position 37 occurs frequently in tRNAs that read codons starting with uridine. Here we have studied how ms2i6A affects the accuracy of poly(U) translation in vitro. Deficiency leads to a higher rejection rate of tRNA4(Leu) by more aggressive proofreading on the wild-type ribosome, but with the initial selection step unchanged. Our data indicate that ms2i6A has no effect on codon-anticodon interactions on wild-type ribosomes as long as aminoacyl-tRNA is in ternary complex with EF-Tu and GTP. ms2i6A deficiency in the cognate poly(U) reader tRNA(Phe) leads to increased misreading when the near-cognate competitor tRNA4(Leu) is wild-type. ms2i6A deficiency in tRNA4(Leu) gives a decreased error level in competition with wild-type tRNA(Phe).  相似文献   

12.
13.
The anticodon of yeast tRNA(Asp), GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNA(Asp) molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNA(Phe). In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNA(Asp) T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNA(Phe). This variation is a consequence of the anticodon-anticodon base pairing which rigidifies the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNA(Asp) substantiate such a correlation.  相似文献   

14.
The irradiation of native or unmodified yeast tRNA(Phe) by short wavelength UV light (260 nM) results in an intramolecular crosslink that has been mapped to occur between C48 in the variable loop and U59 in the T loop. Photo-reversibility of the crosslink and the absence of fluorescent photo adducts suggest that the crosslink product is a cytidine-uridine cyclobutane dimer. This is consistent with the relative geometries of C48 and U59 in the crystal structure of yeast tRNA(Phe). Evaluation of the crosslinking efficiency of the mutants of tRNA(Phe) indicates that the reaction depends on the correct tertiary structure of the RNA.  相似文献   

15.
The reaction of fluorescamine with primary amino groups of tRNAs was investigated. The reagent was attached under mild conditions to the 3'-end of tRNAPhe-C-C-A(3'NH) from yeast and to the minor nucleoside x in E. coli tRNAArg, tRNALys, tRNAMet, tRNAIle and tRNAPhe. The primary aliphatic amino groups of these tRNAs react specifically so that the fluorescamine dye is not attached to the amino groups of the nucleobases. E. coli tRNA species modified on the minor nucleoside X47 can all be aminoacylated. An involvement of the minor modified nucleoside X47 in the tRNA: synthetase interaction is detected. Native tRNALys-C-C-A from E. coli can be phenylalanylated by phenylalanyl-tRNA synthetase from yeast, whereas this is not the case for fluorescamine treated tRNALys-C-C-A(XF47). Pre-tRNAPhe-C-C-A(XF47) forms a ternary complex with the elongation factor Tu:GTP from E. coli, binds enzymatically to the ribosomal A-site and is active in poly U dependent poly Phe synthesis. Fluorescamine-labelled E. coli tRNAs provide new substrates for the study of protein biosynthesis by spectroscopic methods.  相似文献   

16.
17.
A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions.  相似文献   

18.
Interaction of tRNAs with the ribosome at the A and P sites.   总被引:4,自引:1,他引:3       下载免费PDF全文
M Dabrowski  C M Spahn    K H Nierhaus 《The EMBO journal》1995,14(19):4872-4882
In vitro transcribed tRNA(Phe) analogues from Escherichia coli containing up to four randomly distributed A, G, U or C phosphorothioated nucleotides were used to investigate contact patterns with the ribosome in the A and P sites. The tRNAs were biologically active. Molecular iodine (I2) can trigger a break in the sugar-phosphate backbone at phosphorothioated positions of the ribosomal bound tRNAs if contacts with ribosomal components do not prevent access of the iodine. Highly differentiated protection patterns were found which were strikingly different in the A and P sites, respectively. Strong protections accumulated in the T psi C loop and no protection was seen in the extra-arm region in both sites, whereas the phosphates in the anticodon loop are more strongly protected in the A site. Strong common protections in both the A and P sites were found neighbouring universally or semi-universally conserved bases in prominent regions of the tertiary structure of tRNAs: Y11, Y32, U33, psi55, C56, A58 and Y60. These bases are therefore candidates for 'identity elements' in ribosomal tRNA recognition. The data further indicate that tRNAs change their conformations upon binding to either ribosomal site.  相似文献   

19.
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.  相似文献   

20.
The use of some bifunctional Pt(II)-containing cross-linking reagents for investigation of structural organization of ribosomal tRNA- and mRNA-binding centres is demonstrated for various types of [70S ribosome.mRNA-tRNA] complexes. It is shown that treatment of the complexes [70S ribosome.Ac[14C]Phe-tRNA(Phe).poly(U)], [70S ribosome.3'-32pCp-tRNA(Phe).poly(U)] and [70S ribosome.f[35S]Met-tRNA(fMet).AUGU6] with Pt(II)-derivatives results in covalent attachment of tRNA to ribosome. AcPhe-tRNA(Phe) and 3'-pCp-tRNA(Phe) bound at the P site were found to be cross-linked preferentially to 30S subunit. fMet-tRNA(fMet) within the 70S initiation complex is cross-linked to both ribosome subunits approximately in the same extent, which exceeds two-fold the level of the tRNA(Phe) cross-linking. All used tRNA species were cross-linked in the comparable degree both to rRNA and proteins of both subunits in all types of the complexes studied. 32pAUGU6 cross-links exclusively to 30S subunit (to 16S RNA only) within [70S ribosome.32pAUGU6.fMet-tRNA(fMet)] complex. In the absence of fMet-tRNAfMet the level of the cross-linking is 4-fold lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号