首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of 2,3-butanediol in a membrane bioreactor with cell recycle   总被引:11,自引:0,他引:11  
Summary The production of 2,3-butanediol by Enterobacter aerogenes DSM 30053 was studied in a cell recycle system with a microfiltration module. Emphasis was put on the influence of oxygen supply, cell residence time, dilution rate, and pH. Under optimal conditions a productivity as high as 14.6 g butanediol + acetoin/l per hour was achieved with a product concentration of 54 g/l and a product yield of 88%. This productivity is three times higher than that of an ordinary continuous culture. The achievable final product concentration of a cell recycle system was limited by the accumulation of the inhibiting by-product acetic acid, which increased very rapidly at low dilution rate. To maximize product concentration a fed-batch fermentation was carried out with stepwise pH adaption at high cell density. A final product concentration of 110 g/l was obtained with a productivity of 5.4 g/l per hour and a yield of 97%.  相似文献   

2.
A stable continuous culture has been maintained for 30 days at a high 20 g/l solvent concentration. This substantial increase in the stability of the continuous culture ofClostridium acetobutylicum at the maximal solvent level was achieved by using a two-stage process with a dilution rate of 0.1 h–1 in the first fermentor and 0.04 h–1 in the second fermentor. The two-stage continuous fermentation allows an optimal growth of cells and induction of solvent metabolism in the first stage, and a maximal production yield of solvents in the second stage.  相似文献   

3.
Haematococcus pluvialis under stress conditions overproduces the valuable red ketocarotenoid astaxanthin. Two proposed strategies for commercial production are under current analysis. One separates in time the production of biomass (optimal growth, green stage) and pigment (permanent stress, red stage), while the other uses an approach based on continuous culture under limiting stress at steady state. The productivities, efficiencies and yields for the pigment accumulation in each case have been compared and analyzed in terms of the algal basic physiology. The two-stage system indoors yields a richer astaxanthin product (4% of dry biomass) with a final astaxanthin productivity of 11.5 mg L(-1) day(-1), is more readily upscalable and amenable to outdoors production. Furthermore, each stage can be optimized for green biomass growth and red pigment accumulation by adjusting independently the respective ratio of effective irradiance to cell density. We conclude that the two-stage system performs better (by a factor of 2.5-5) than the one-stage system, and the former is best fit in an efficient mass production setup.  相似文献   

4.
Lipid accumulation and fatty acid composition in Candida 107 have been studied using a two-stage continuous culture system in which the first vessel was run under carbon-limited conditions and then the entire output was passed into a second vessel, where lipid accumulation was stimulated by adding only glucose. Maximum lipid accumulation (28% of yeast [dry weight]) occurred for a volume ratio of vessel 1 to vessel 2 of 3:5, with 30 g of glucose per liter being added to vessel 2 operated at 25°C with an aeration rate of between 0.1 and 1.0 volume of air/volume of medium per min. Although the maximum specific rate of lipid formation (0.05 g of lipid/g of yeast per h) was higher than in a nitrogen-limited, single-stage system, the efficiency of lipid formation was much less and never exceeded 14 g of lipid produced per 100 g of glucose consumed. The fatty acid composition was not significantly altered in either the two-stage or single-stage culture (nitrogen-limited) systems by changes in growth temperature (from 19 to 33°C) or aeration rates (0.05 to 1.0 volume of air/volume of medium per min); or, in the two-stage system, by changes in the residence time of the yeast in the second vessel (from 3.2 to 24.4 h), or, in the single-stage system, by changes in pH (from 3.5 to 7.5). Only when the concentration of glucose entering vessel 2 of the two-stage system was less than 30 g/liter did significant changes in the fatty acids occur. Thus, although a two-stage continuous culture system allows lipid accumulation to be separated from the growth phase, it offers no practical advantages over a single-stage system as a means of producing microbial oils and fats.  相似文献   

5.
A two-stage culture strategy was studied for continuous high-level production of a foreign protein in the chemically inducible T7 expression system. The first stage is dedicated to the maintenance of plasmid-bearing cells and the second stage to the target protein synthesis by induction of cells coming from the first stage. On entering the second stage, recombinant cells undergo a gradual induction of the target gene expression. These plasmid-bearing cells experience dynamic changes in intracellular compositions and specific growth rates with their individual residence times. Therefore, the overall cultural characteristics in the production stage are really averages of the contributions from the various cells with different residence times. The behavior of the two-stage culture is described by a model, which accounts for dynamic variations of cell growth and protein synthesis rates with cell residence times. Model simulations were compared with experimental results at a variety of operating conditions such as inducer concentration and dilution rate. This model is useful for understanding the behavior of two-stage continuous cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion‐dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non‐ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled‐up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi‐)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large‐scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow‐through mode, this is its first commercial‐scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low‐dose biopharmaceuticals. Biotechnol. Bioeng. 2012; 109: 3049–3058. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
This paper describes the implementation of multilevel techniques using a microprocessor to control multistage continuous culture systems. A system which produces gramicidin S is taken as an example. The single level technique using the conjugate gradient method is applied to solve the two-stage and the three-stage continuous culture and is compared with the multilevel one. The results show that the application of multilevel techniques is more advantageous and suitable for this system than any other method which has been utilized so far. The advantages of using a microprocessor will be stated.  相似文献   

8.
This article calculates optimal open-loop temperature trajectories that maximize the average rate of product synthesis of a plant cell culture. It uses a previously published five-state mathematical model which describes the growth and product synthesis of a batch plant cell suspension culture of Catharanthus roseus under temperature control. The optimal open-loop temperatures maximize the final product concentration for predefined fermentation periods. A single switch in temperature is shown by computer simulation to be near optimal, with a 22% increase in final product yield over that obtained at the optimal constant temperature. Examination of the achieved final product yield as a function of fermentation period allows this period also to be chosen optimally. This time is reduced from 16 days in the constant temperature case to 12 days in the switched temperature case.  相似文献   

9.
Bacteriophage u containing a cloned-gene is stably maintained in Escherichia coli in the lysogenic state while it is replicated and it overproduces a recombinant protein product in the lytic state. The host cell is eventually lysed in the lytic state. The kinetics of cell lysis and production induction were studied and are reported in this article through model equations. In two-stage continuous operation, the first tank is maintained in the lysogenic state for cell growth and cloned-gene stability while the second tank is in the lytic state for the overproduction of cloned-gene product. Individual cells in the second tank have different extent of the induction for product formation, since each has a different residence time. The different residence time for individual cells was taken into account using a population model. The numerical results show good agreement with the experimental data for the prediction of dilution rate in the second tank which gives the maximum product concentration.  相似文献   

10.
A two-stage continuous cultivation experiment with Clostridium beijerinckii NRRL B592 is described. The experiment was designed to mimic the two phases of batch culture growth of the organism in a two-stage continuous process. Thus in the first stage turbidostat the organism was grown acidogenically as rapidly as possible, and transferred to the second stage at the 'acid break point'. The second stage was designed to mimic the solventogenesis of the batch culture when it enters late exponential/early stationary phase. The volume of the second stage vessel was calculated to provide the necessary residence time for complete sugar utilization. It was hoped that the experimental set-up chosen would show whether data obtained from batch fermentation could be transferred directly to continuous culture. The culture maintained its ability to produce acetone, 1-butanol and ethanol at a dilution rate of 0.12 h(-1) for the first stage and 2.2 x 10(-2) h(-1) for the second stage and achieved an average overall solvent concentration of 15 g/l and an overall solvent productivity of 0.27 g/l/h for a period of steady-state operation of more than 1600 hours. The productivity of solventogenesis in the first stage was dependent on the value of the growth rate of the culture which was in turn determined in part by the organism employed but also by the medium composition.  相似文献   

11.
12.
Summary A system for the continuous cultivation of plant cells has been developed, based on a commercially available 3–1 turbine-stirred fermentor. A special device was constructed to provide for homogeneous effluent from the culture at low dilution rates. Two steady states with Catharanthus roseus cells growing under glucose limitation are described with respect to biomass yield on the carbon and energy source glucose, specific oxygen consumption, specific carbon dioxide production and (by)product formation. From a carbon balance for each steady state it is shown that the flow of carbon to the culture (as glucose) practically equalled the flow of carbon from the culture (as biomass, carbon dioxide and (by)product). Biomass yields on glucose were 0.31 g/g and 0.35 g/g at dilution rates of 0.0060 l/h and 0.0081 l/h respectively. The striking difference between the obtained yield coefficients and biomass yield commonly found for batch-cultured plant cells is discussed.  相似文献   

13.
Summary A two-stage fermentation process has been developed for continuous ethanol production by immobilized cells of Zymomonas mobilis. About 90–92 kg/m3 ethanol was produced after 4 h of residence time. Entrapped cells of Zymomonas mobilis have a capability to convert glucose to ethanol at 93% of the theoretical yield. The immobilized cell system has functioned for several weeks, and experience indicates that the carrageenan gel apparently facilitates easy diffusion of glucose and ethanol.The simplicity and the high productivity of the plug-flow reactor employing immobilized cells makes it economically attrative. An evaluation of process economics of an immobilized cell system indicates that at least 4 c/l of ethanol can be saved using the immobilized cell system rather than the conventional batch system. The high productivity achieved in the immobilized cell reactor results in the requirement for only small reactor vessels indicating low capital cost. Consequently, by switching from batch to immobilized processing, the fixed capital investment is substantially reduced, thus increasing the profitability of ethanol production by fermentation.  相似文献   

14.
The thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 was immobilized in calcium alginate and used in a continuous flow bioreactor to produce ethanol from molasses at 45?°C. The molasses was diluted to yield a number of final sugar concentrations and the effect of molasses sugar concentration on ethanol production by the continuous system was examined. Although maximum ethanol concentrations were obtained using sugar concentrations of 140?g/l, within 10?h of introducing the feed to the column bioreactors, those ethanol concentrations subsequently decreased to lower levels over a 48?h period. Examination of viable yeast cell number within the immobilization matrix indicated a dramatic reduction over this time period. At lower molasses concentrations, ethanol production by the continuous flow system remained relatively constant over this time period. In addition, the effect of residence time on ethanol production by the continuous flow bioreactor was examined at a fixed molasses sugar concentration (120?g/l) and a residence time of 0.66?h was found to be optimal on the basis of volumetric productivity. Efficiencies of the continuous flow bioreactor configuration used in these studies ranged from 31–76%.  相似文献   

15.
This article presents a simple, unstructured mathematical model describing microbial growth in continuous culture limited by a gaseous substrate. The model predicts constant gas conversion rates and a decreasing biomass concentration with increasing dilution rate. It has been found that the parameters influencing growth are primarily the gas transfer rate and the dilution rate. Furthermore, it is shown that, for correct simulation of growth, the influence of gaseous substrate consumption on the effective gas flow through the system has to be taken into account.Continuous cultures of Methanobacterium thermoautotrophicum were performed at three different gassing rates. In addition to the measurement of the rates of biomass production, product formation, and substrate consumption, microbial heat dissipation was assessed using a reaction calorimeter. For the on-line measurement of the concentration of the growth-limiting substrate, H(2), a specially developed probe has been used. Experimental data from continuous cultures were in good agreement with the model simulations. An increase in gassing rate enhanced gaseous substrate consumption and methane production rates. However, the biomass yield as well as the specific conversion rates remained constant, irrespective of the gassing rate. It was found that growth performance in continuous culture limited by a gaseous substrate is substantially different from "classic" continuous culture in which the limiting substrate is provided by the liquid feed. In this report, the differences between both continuous culture systems are discussed.  相似文献   

16.
The key feature of this paper is the optimization of an industrial process for continuous production of lactic acid. For this, a two-stage fermentor process integrated with cell recycling has been mathematically modeled and optimized for overall productivity, conversion, and yield simultaneously. Non-dominated sorting genetic algorithm (NSGA-II) was applied to solve the constrained multi-objective optimization problem as it is capable of finding multiple Pareto-optimal solutions in a single run, thereby avoiding the need to use a single-objective optimization several times. Compared with traditional methods, NSGA-II could find most of the solutions in the true Pareto-front and its simulation is also very direct and convenient. The effects of operating variables on the optimal solutions are discussed in detail. It was observed that we can make higher profit with an acceptable compromise in a two-stage system with greater efficiency.  相似文献   

17.
Batch and continuous fermentation studies were performed to optimize the production of ammonium lactate from whey to optimize the production of ammonium lactate from whey permeate. The product known as fermented ammoniated condensed whey permeate (FACWP) is a very promising animal feed. After an initial screening of four strains which produce predominantly L(+)- lactic acid, the desired isomer [D(-)-lactic acid is toxic], Streptococcus cremoris 2487 was chosen for further study. In batch mode, pH between 6.0 and 6.5 and 35 degrees C provided optimum incubation conditions. To stimulate a plug flow reactor, three CSTRs (continuous stirred tank reactors) were connected in tandem. For a 7.5-h retention time, 1.6-fold and 1.3-fold higher productivities were obtained for three-stage than for the single- and two-stage reactors, respectively. Various retentions times were examined (5, 7.5, and 10 h; 5g/L yeast extract). Although maximum lactate productivity occurred at a 5-h residence time (5.38 g/L H. 75% lactose utilization), lactose utilization was more complete at 7.5 h (4.38 g/L h productivity, 91% lactose utilization and a productivity, 91% lactose utilization). Retention time was increased to 15 h to obtain 95.9% lactose utilization and a productivity of 2.42g/L h for 2g/L yeast extract. Based on this lower yeast extract concentration, it was determined that ammonium lactate production and subsequent concentration by 11-fold would yield a product (FACWP) 17% more than soybean meal (crude protein contents are equivalent, 44%) at current market prices.  相似文献   

18.
A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for ''dry'' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The ''dry'' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s ''dry'' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.  相似文献   

19.
A structured kinetic model has been employed to analyze the performance of a two-stage continuous fermentation of a recombinant Escherichia coli. Separating the cell growth phase from the gene expression phase in two fermentors minimizes the growth rate difference between the recombinant cells and the plasmid-free cells in the first fermentor, thereby increasing the plasmid stability. The plasmid-harboring cells from the first fermentor are continuously fed into the second fermentor, in which the foreign protein synthesis is turned on by the addition of the inducer. Consequently, the recombinant cells experience an immediate reduction in growth rates as soon as they enter the second stage and then recover to synthesize the foreign protein. To analyze the fermentation performance contributed by these cells with different intracellular foreign protein levels and growth rates, a novel method for determining the residence time distribution of the growing cells in the second stage has been formulated. Combined with this method, the structured kinetic model for recombinant bacterial cells is used to predict the plasmid stability and foreign productivity at various operation conditions, such as induction strength and dilution rates. This model can provide us with thorough understanding of the characteristics of the two-stage fermentations, and is useful for the development of large scale continuous cultures of recombinant bacteria.  相似文献   

20.
Photosynthetic ATP accumulation was shown in the presence of exogenous ADP plus orthophosphate on illumination to the intact cells of a strain of thermophilic blue-green algae isolated from Matsue hot springs, Mastigocladus sp. Kinetic studies of various effectors on the ATP accumulation proved that the ATP synthesis depends mainly on the cyclic photophosphorylation system around photosystem I (PS-I) in the algal cells. The temperature and pH optima for the accumulation were found at 45 degrees C and pH 7.5. Maximum yield was obtained with light intensity higher than 15 mW/cm(2). Borate ion exerted pronounced enhancement on the ATP synthesis. With a continuous reactor at a flow rate of 1 ml/hr at 45 degrees C and pH 7.5, efficient photoconversion of ADP (2mM, at substrate reservoir) to ATP (1mM, at product outlet) has been maintained for a period of 2.5 days, though the efficiency has decreased in a further 2-day period to the level of 0.5mM ATP/9.5 h of residence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号