首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.  相似文献   

2.
The folding pathway of the Tetrahymena ribozyme correlates inversely with the sequence distance between native interactions, or contact order. The rapidly folding P4-P6 domain has a low contact order, while the slowly folding P3-P7 region has a high contact order. To examine the role of topology and contact order in RNA folding, we screened for circular permutants of the ribozyme that retain catalytic activity. Permutants beginning in the P4-P6 domain fold 5 to 20 times more slowly than the wild-type ribozyme. By contrast, 50% of a permuted RNA that disjoins a non-native interaction in P3 folds tenfold faster than the wild-type ribozyme. Hence, the probability of rapidly folding to the native state depends on the topology of tertiary domains.  相似文献   

3.
4.
5.
The free energy landscape for the folding of large, multidomain RNAs is rugged, and kinetically trapped, misfolded intermediates are a hallmark of RNA folding reactions. Here, we examine the role of a native loop-receptor interaction in determining the ruggedness of the energy landscape for folding of the Tetrahymena ribozyme. We demonstrate a progressive smoothing of the energy landscape for ribozyme folding as the strength of the loop-receptor interaction is reduced. Remarkably, with the most severe mutation, global folding is more rapid than for the wild-type ribozyme and proceeds in a concerted fashion without the accumulation of long-lived kinetic intermediates. The results demonstrate that a complex interplay between native tertiary interactions, divalent ion concentration, and non-native secondary structure determines the ruggedness of the energy landscape. Furthermore, the results suggest that kinetic folding transitions involving large regions of highly structured RNAs can proceed in a concerted fashion, in the absence of significant stable, preorganized tertiary structure.  相似文献   

6.
Folding of the Tetrahymena ribozyme under physiological conditions in vitro is limited by slow conversion of long-lived intermediates to the active structure. These intermediates arise because the most stable domain of the ribozyme folds 10-50 times more rapidly than the core region containing helix P3. Native gel electrophoresis and time-resolved X-ray-dependent hydroxyl radical cleavage revealed that mutations that weaken peripheral interactions between domains accelerated folding fivefold, while a point mutation that stabilizes P3 enabled 80 % of the mutant RNA to reach the native conformation within 30 seconds at 22 degrees C. The P3 mutation increased the folding rate of the catalytic core as much as 50-fold, so that both domains of the ribozyme were formed at approximately the same rate. The results show that the ribozyme folds rapidly without significantly populating metastable intermediates when native interactions in the ribozyme core are stabilized relative to peripheral structural elements.  相似文献   

7.
Domains are the structural, functional, and evolutionary components of proteins. Most folding studies to date have concentrated on the folding of single domains, but more than 70% of human proteins contain more than one domain, and interdomain interactions can affect both the stability and the folding kinetics. Whether the folding pathway is altered by interdomain interactions is not yet known. Here we investigated the effect of a folded neighbouring domain on the folding pathway of spectrin R16 (the 16th α-helical repeat from chicken brain α-spectrin) by using the two-domain construct R1516. The R16 folds faster and unfolds more slowly in the presence of its folded neighbour R15 (the 15th α-helical repeat from chicken brain α-spectrin). An extensive Φ-value analysis of the R16 domain in R1516 was completed to compare the transition state of the R16 domain alone with that of the R16 domain in a multidomain construct. The results indicate that the folding pathways are the same. This result validates the current approach of breaking up larger proteins into domains for the study of protein folding pathways.  相似文献   

8.
We investigated the relationship between RNA structure and folding rates accounting for hierarchical structural formation. Folding rates of two-state folding proteins correlate well with relative contact order, a quantitative measure of the number and sequence distance between tertiary contacts. These proteins do not form stable structures prior to the rate-limiting step. In contrast, most secondary structures are stably formed prior to the rate-limiting step in RNA folding. Accordingly, we introduce "reduced contact order", a metric that reflects only the number of residues available to participate in the conformational search after the formation of secondary structure. Plotting the folding rates and the reduced contact order from ten different RNAs suggests that RNA folding can be divided into two classes. To examine this division, folding rates of circularly permutated isomers are compared for two RNAs, one from each class. Folding rates vary by tenfold for circularly permuted Bacillus subtilis RNase P RNA isomers, whereas folding rates vary by only 1.2-fold for circularly permuted catalytic domains. This difference is likely related to the dissimilar natures of their rate-limiting steps.  相似文献   

9.
The P4-P6 domain serves as a scaffold against which the periphery and catalytic core organize and fold during Mg2+-mediated folding of the Tetrahymena thermophila ribozyme. The most prominent structural motif of the P4-P6 domain is the tetraloop-tetraloop receptor interaction which "clamps" the distal parts of its hairpin-like structure. Destabilization of the tertiary structure of the P4-P6 domain by perturbation of the tetraloop-tetraloop receptor interaction alters the Mg2+-mediated folding pathway. The folding hierarchy of P5c approximately P4-P6 > periphery > catalytic core that is a striking attribute of the folding of the wild-type RNA is abolished. The initial steps in folding of the mutant RNA are > or =50-fold faster than those of the wild-type ribozyme with the earliest observed tertiary contacts forming around regions known to specifically bind Mg2+. The interaction between the mutant tetraloop and the tetraloop receptor appears coincidently with slowly forming catalytic core tertiary contacts. Thus, the stability conferred upon the P4-P6 domain by the tetraloop-tetraloop receptor interaction dictates the preferred folding pathway by stabilizing an early intermediate. A sub-denaturing concentration of urea diminishes the early barrier to folding the wild-type ribozyme along with complex effects on the subsequent steps of folding the wild-type and mutant RNA.  相似文献   

10.
Folding mechanism of the Tetrahymena ribozyme P4-P6 domain   总被引:2,自引:0,他引:2  
Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4-P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (approximately 2 s(-1)) as it does in the ribozyme, when folding is measured in 10 mM sodium cacodylate and 10 mM MgCl(2). Surprisingly, tertiary interactions around a three-helix junction (P5abc) within the P4-P6 domain fold at least 25 times more rapidly (k >/= 50 s(-1)) in isolation, than when part of the wild-type P4-P6 RNA. This difference implies that long-range interactions in the P4-P6 domain can interfere with folding of P5abc. P4-P6 was observed to fold much faster at higher ionic strength than in 10 mM sodium cacodylate. Analytical centrifugation was used to measure the sedimentation and diffusion coefficients of the unfolded RNA. The hydrodynamic radius of the RNA decreased from 58 to 46 A over the range of 0-100 mM NaCl. We propose that at low ionic strength, the addition of Mg(2+) causes the domain to collapse to a compact intermediate where P5abc is trapped in a non-native structure. At high ionic strength, the RNA rapidly collapses to the native structure. Faster folding most likely results from a different average initial conformation of the RNA in higher salt conditions.  相似文献   

11.
Domain structure of the ribozyme from eubacterial ribonuclease P.   总被引:8,自引:3,他引:5       下载免费PDF全文
Large RNAs can be composed of discrete domains that fold independently. One such "folding domain" has been identified previously in the ribozyme from Bacillus subtilis ribonuclease P (denoted P RNA). This domain contains roughly one-third of all residues. Folding of an RNA construct consisting of the remaining two-thirds of B. subtilis P RNA was examined by Fe(II)-EDTA hydroxyl radical protection. This molecule folds into the proper higher-order structure under identical conditions as the full-length P RNA, suggesting the presence of a second folding domain in B. subtilis P RNA. Folding analysis of the Escherichia coli P RNA by hydroxyl radical protection shows that this P RNA is completely folded at 5-6 mM Mg2+. In order to analyze the structural organization of folding domains in E. coli P RNA, constructs were designed based on the domain structure of B. subtilis P RNA. Fe(II)-EDTA protection indicates that E. coli P RNA also contains two folding domains. Despite the significant differences at the secondary structure level, both P RNAs appear to converge structurally at the folding domain level. The pre-tRNA substrate, localized in previous studies, may bind across the folding domains with the acceptor stem/3'CCA contacting the domain including the active site and the T stem-loop contacting the other. Because all eubacterial P RNAs share considerable homology in secondary structure to either B. subtilis or E. coli P RNA, these results suggest that this domain structure may be applicable for most, if not all, eubacterial P RNAs. Identification of folding domains should be valuable in dissecting structure-function relationship of large RNAs.  相似文献   

12.
The P5abc peripheral element stabilizes the Tetrahymena group I ribozyme and enhances its catalytic activity. Despite its beneficial effects on the native structure, prior studies have shown that early formation of P5abc structure during folding can slow later folding steps. Here we use a P5abc deletion variant E(deltaP5abc) to systematically probe the role of P5abc throughout tertiary folding. Time-resolved hydroxyl radical footprinting shows that E(deltaP5abc) forms its earliest stable tertiary structure on the millisecond time scale, approximately 5-fold faster than the wild-type ribozyme, and stable structure spreads throughout E(deltaP5abc) in seconds. Nevertheless, activity measurements show that the earliest detectable formation of native E(deltaP5abc) ribozyme is much slower (approximately 0.6 min(-1)), in a manner similar to that of the wild type. Also similar, only a small fraction of E(deltaP5abc) attains the native state on this time scale under standard conditions at 25 degrees C, whereas the remainder misfolds; footprinting experiments show that the misfolded conformer shares structural features with the long-lived misfolded conformer of the wild-type ribozyme. Thus, P5abc does not have a large overall effect on the rate-limiting step(s) along this pathway. However, once misfolded, E(deltaP5abc) refolds to the native state 80-fold faster than the wild-type ribozyme and is less accelerated by urea, indicating that P5abc stabilizes the misfolded structure relative to the less-ordered transition state for refolding. Together, the results suggest that, under these conditions, even the earliest tertiary folding intermediates of the wild-type ribozyme represent misfolded species and that P5abc is principally a liability during the tertiary folding process.  相似文献   

13.
14.
15.
Maximizing RNA folding rates: a balancing act   总被引:1,自引:1,他引:0       下载免费PDF全文
Large ribozymes typically require very long times to refold into their active conformation in vitro, because the RNA is easily trapped in metastable misfolded structures. Theoretical models show that the probability of misfolding is reduced when local and long-range interactions in the RNA are balanced. Using the folding kinetics of the Tetrahymena ribozyme as an example, we propose that folding rates are maximized when the free energies of forming independent domains are similar to each other. A prediction is that the folding pathway of the ribozyme can be reversed by inverting the relative stability of the tertiary domains. This result suggests strategies for optimizing ribozyme sequences for therapeutics and structural studies.  相似文献   

16.
Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are approximately 0.7 min(-1)in 10 mM MgCl(2)at 37 degrees C, approximately 4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate.  相似文献   

17.
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.Abbreviations cpRNA circularly permuted RNA  相似文献   

18.
Folding of a universal ribozyme: the ribonuclease P RNA   总被引:1,自引:0,他引:1  
Ribonuclease P is among the first ribozymes discovered, and is the only ubiquitously occurring ribozyme besides the ribosome. The bacterial RNase P RNA is catalytically active without its protein subunit and has been studied for over two decades as a model system for RNA catalysis, structure and folding. This review focuses on the thermodynamic, kinetic and structural frameworks derived from the folding studies of bacterial RNase P RNA.  相似文献   

19.
20.
B Laggerbauer  F L Murphy    T R Cech 《The EMBO journal》1994,13(11):2669-2676
The L-21 Tetrahymena ribozyme, an RNA molecule with sequence-specific endoribonuclease activity derived from a self-splicing group I intron, provides a model system for studying the RNA folding problem. A 160 nucleotide, independently folding domain of tertiary structure (the P4-P6 domain) comprises about half of the ribozyme. We now apply Fe(II)-EDTA cleavage to mutants of the ribozyme to explore the role of individual structural elements in tertiary folding of the RNA at equilibrium. Deletion of peripheral elements near the 3' end of the ribozyme destabilizes a region of the catalytic core (P3-P7) without altering the folding of the P4-P6 domain. Three different mutations within the P4-P6 domain that destabilize its folding also shift the folding of the P3-P7 region of the catalytic core to higher MgCl2 concentrations. We conclude that the role of the extended P4-P6 domain and of the 3'-terminal peripheral elements is at least in part to stabilize the catalytic core. The organization of RNA into independently folding domains of tertiary structure may be common in large RNAs, including ribosomal RNAs. Furthermore, the observation of domain-domain interactions in a catalytic RNA supports the feasibility of a primitive spliceosome without any proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号