首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Smooth-surfaced elements of endoplasmic reticulum contact and are attached to the outer membranes of mitochondria in rat liver and onion stem. Some connections appear as short, 150–300 Å diameter tubules that bridge the space between the conjoining elements. In liver, the smooth-surfaced endoplasmic reticulum cisternae connected to the outer mitochondrial membrane are shown to be continuous with rough-surfaced endoplasmic reticulum. Here, the smooth-surfaced endoplasmic reticulum is identified in negatively stained preparations of isolated cell fractions and in thin sections of tissues by the presence of lipoprotein particles characteristic of this cell component. In onion, the identification of endoplasmic reticulum is based on continuity with rough-surfaced endoplasmic reticulum.  相似文献   

2.
Plant viruses encode movement proteins that are essential for systemic infection of their host but dispensable for replication and encapsidation. BL1, one of the two movement proteins encoded by the bipartite geminivirus squash leaf curl virus, was immunolocalized to unique approximately 40-nm tubules that extended up to and across the walls of procambial cells in systemically infected pumpkin leaves. These tubules were not found in procambial cells from pumpkin seedlings inoculated with BL1 mutants that are defective in movement. The tubules also specifically stained with antisera to binding protein (BiP), indicating that they were derived from the endoplasmic reticulum. Independent confirmation of this endoplasmic reticulum association was obtained by subcellular fractionation studies in which BL1 was localized to fractions that contained both endoplasmic reticulum membranes and BiP. Thus, squash leaf curl virus appears to recruit the endoplasmic reticulum as a conduit for cell-to-cell movement of the viral genome.  相似文献   

3.
Weaving the web of ER tubules   总被引:1,自引:0,他引:1  
Hu J  Prinz WA  Rapoport TA 《Cell》2011,147(6):1226-1231
How is the characteristic shape of an organelle generated? Recent work has provided insight into how the tubular network of the endoplasmic reticulum (ER) is formed. The tubules themselves are shaped by the reticulons and DP1/Yop1p, whereas their fusion into a network is brought about by membrane-bound GTPases that include the atlastins, Sey1p, and RHD3.  相似文献   

4.
Cargo selection and export from the endoplasmic reticulum occurs at specialized sites in cells. Export complexes consist of transitional elements of the endoplasmic reticulum and pre-Golgi intermediates. It is generally assumed that 60 to 80 nm initially COPII-coated vesicles derived from the transitional endoplasmic reticulum are the main carriers for transport of cargo to the Golgi apparatus. We have analyzed on serial ultrathin sections the transitional endoplasmic reticulum and pre-Golgi intermediates of beta cells of islets of Langerhans in mouse pancreas. In addition to Golgi-associated complexes, others were observed in the periphery of the cells or close to the nuclear envelope. Upon three-dimensional reconstruction, non-coated ribosome-free tubules with an average diameter of 115 nm (range 60–195 nm) and a length of up to 500 nm were detected in the pre-Golgi intermediates in addition to small vesiculo-tubular elements. Furthermore, evidence was found that the large tubular elements may directly arise from transitional elements of the endoplasmic reticulum. In a given cell, pre-Golgi intermediates were found to be composed solely of small vesiculo-tubular elements or additionally of tubules or solely of tubules. Immunogold labeling for proinsulin indicated that the large tubular elements contained cargo and thus appear to take part in ER-to-Golgi transport.Presented at the 43rd Symposium of the Society for Histochemistry, Vienna, Austria, 27–29 September 2001  相似文献   

5.
Summary Administration of mouse interferon to neonatal mice induces the formation of tubular aggregates within hepatocytes. These aggregates are composed of networks of small tubules which are continuous with the granular endoplasmic reticulum. The tubules are bounded by trilaminar unit membranes and exhibit glucose-6-phosphatase activity. These features suggest that the tubular aggregate is an interferon-induced alteration of the endoplasmic reticulum.  相似文献   

6.
Summary The intra-axonal organization of the smooth endoplasmic reticulum was studied in the neurohypophysis of rats during and after water deprivation. Parallel to conventional electron microscopy, the material was treated with a double impregnation staining technique specifically designed to contrast the intracellular membranous system. In conventionally stained ultrathin sections from severely dehydrated rats most axons appeared to be free of membranous organelles, whereas corresponding axons treated with the double-impregnation technique generally exhibited a highly developed system of smooth endoplasmic reticulum. In axonal endings, both techniques revealed a profusion of microvesicles in intimate relationship with tubular elements of the smooth endoplasmic reticulum. In short-term (12 h) rehydrated rats, a similarly developed system of smooth endoplasmic reticulum was still observed at all axonal levels with both procedures. After 24 to 48 h of rehydration the tubules of the smooth endoplasmic reticulum exhibited, in double impregnated material, numerous dilatations which resembled the adjacent neurosecretory granules. In conventionally stained ultrathin sections, an accumulation of electron dense material occurred within tubules of the smooth endoplasmic reticulum in the more proximal axonal segments, while in the more terminal segments, which contained numerous elongated granules, membrane continuity was frequently observed between newly formed granules and the smooth endoplasmic reticulum. After 7 days of rehydration the general pattern of the axonal smooth endoplasmic reticulum was comparable to that in untreated rats. These results are discussed in the light of a suggested involvement of the axonal smooth endoplasmic reticulum in the non-granular transport of neurosecretory material in connection with (1) storage in distally formed granules, and (2) release via microvesicles. Acknowledgements: The authors wish to express their gratitude to Mrs. M. Balmefrézol for her skillful technical assistance  相似文献   

7.
Rat livers were fixed by perfusion with glutaraldehyde via the portal vein and postfixed with a mixture of osmium tetroxide and potassium ferricyanide. Subsurface cisterns and vesicles were demonstrated, and, from serial sections, it appears that these organelles are part of large, fenestrated cisterns situated parallel to and at a distance of 20-40 nm from the lateral plasma membrane. Some of the cisterns possessed ribosomes on the surface facing the interior of the cell and, at points, they were continuous with the endoplasmic reticulum. From the lateral cisterns, tubules approached the plasma membrane facing the space of Disse and the sinusoid. A network of tubules was found in the vicinity of the bile canaliculus; a part of it lay close to the canalicular plasma membrane. Serial sectioning revealed that this network was continuous with the lateral cisterns via the endoplasmic reticulum. This morphology resembles that of tubulo-cisternal endoplasmic reticulum of such transporting epithelia as the choroid plexus and the renal proximal tubules.  相似文献   

8.
Summary Horseradish peroxidase (HRP) has been used as a protein tracer in order to visualize the ultrastructural sites of the orthograde transport of protein macromolecules in the hypothalamo-neurohypophysial tract of the rat. After a local injection of HRP within the supraoptic nucleus, the reaction product was observed: (1) mainly in tubules of the smooth endoplasmic reticulum in the more proximal part of the axons, and (2) in granules and microvesicles of the axon terminals. Observations on thick sections clearly showed the existence of a relationship between the smooth endoplasmic reticulum containing HRP and the labeled granules or microvesicles. These data are in good agreement with previous findings showing the existence of direct continuity between tubules of the smooth endoplasmic reticulum and a fraction of the neurosecretory granules and microvesicles. This evidence further reinforces the hypothesis that the latter organelles may possibly originate locally in the axons from the tubules of the smooth endoplasmic reticulum which may therefore be proposed as a possible vehicle for a non-granular intra-axonal transport of neurosecretory material in neurosecretory neurons.  相似文献   

9.
E. Pacini  M. Cresti 《Planta》1977,137(1):1-4
Double-walled tubules containing rows of isodiametric virus particles were observed in developing pollen grains of Olea europaea L. cultivar Correggiolo. Sometimes the tubules are contained in another double-walled tubular structure or in a tubular endoplasmic reticulum cistern. The viruses are present in the cytoplasm from the microspore mother cell stage up to the microspore stage but just before the first haploid mitosis they are to be found only in the pores, inside the evaginations formed by the plasmalemma. During the last phase of pollen grain development, after the germinative pores are completed, the viruses disappear.Abbreviations ER endoplasmic reticulum  相似文献   

10.
Summary Tubular systems present in bean leaf glands have been studied electron microscopically. Ordered arrays of small tubules (290 Å in diameter) arise from the endoplasmic reticulum in early stages of gland development and remain connected to it. Subsequently larger tubules (560–660 Å in diameter) appear among the smaller tubules and gradually replace many of them. The large tubules are not connected to the endoplasmic reticulum. They contain an electron dense material and their walls exhibit a patterned substructure. In older gland cells the bundles of large tubules run randomly through the cytoplasm. The relationship of the two types of gland tubules to conventional microtubules has been examined morphologically and experimentally. The small tubules have larger diameters and thicker walls than microtubules. Neither type of gland tubule is affected by low temperature or colchicine, or, in thin sections, by pepsin digestion. This suggests that these tubules are not closely related chemically to either cytoplasmic or ciliary microtubules. The two systems of tubules are closely associated with prominent protein vacuoles in the gland cells, but are not directly connected to them.This work was supported in part by grant no. GB-6161 from the National Science Foundation.  相似文献   

11.
The Drosophila fusome is a germ cell-specific organelle assembled from membrane skeletal proteins and membranous vesicles. Mutational studies that have examined inactivating alleles of fusome proteins indicate that the organelle plays central roles in germ cell differentiation. Although mutations in genes encoding skeletal fusome components prevent proper cyst formation, mutations in the bag-of-marbles gene disrupt the assembly of membranous cisternae within the fusome and block cystoblast differentiation altogether. To understand the relationship between fusome cisternae and cystoblast differentiation, we have begun to identify other proteins in this network of fusome tubules. In this article we present evidence that the fly homologue of the transitional endoplasmic reticulum ATPase (TER94) is one such protein. The presence of TER94 suggests that the fusome cisternae grow by vesicle fusion and are a germ cell modification of endoplasmic reticulum. We also show that fusome association of TER94 is Bam-dependent, suggesting that cystoblast differentiation may be linked to fusome reticulum biogenesis.  相似文献   

12.
Electron microscopy and cryoimmunocytochemistry were used to characterize tubular connections in the secretory pathway using rat spermatids as model. Our results support the existence of a complex tubular network enriched in the Golgi matrix protein GM130 that transiently joins the cis-Golgi side and the endoplasmic reticulum. These tubules occasionally contain the endoplasmic reticulum resident protein PDI but not COPII complexes or KDEL receptor. At the lateral edges of the stacks tubules were seen to connect cisternae belonging to the same or adjacent stacks. These connections were observed in all cisternae but preferentially on the cis side. Giantin, Gos28 and Rab6 were detected in the tubules; importantly, we reported the presence of cis-trans heterotypic connections between cisternae. On the trans-Golgi side, we occasionally observed tubules highly immunoreactive for Rab6 connecting the stack with the forming acrosome. Together, our results support the existence of transient continuities throughout the secretory pathways.  相似文献   

13.
Glomiform inclusions, also called tubular arrays in endoplasmic reticulum, are found in the epithelial cells of glandular tissues of a patient with systemic lupus erythematosus, a patient with Reye’s syndrome, and a dog. Their three dimensional structure is interpreted as a skein of contorted tubules of endoplasmic reticulum. Fibrillar inclusions found in the pancreatic acinar cells of two patients are believed to represent altered zymogen granules.  相似文献   

14.
Summary During a survey of liver tissue from 100 dogs, fine tubules were observed within the cisternae of the endoplasmic reticulum of hepatocytes in one dog. The tubules were 300 Å in diameter with electron dense walls of 100 Å thickness. Many cells contained the tubules but their significance is unknown. The tubules varied from other reported microtubules in their location, size and characteristics of fixation and staining.  相似文献   

15.
The endoplasmic reticulum is a multifunctional organelle composed of functionally and morphologically distinct domains. These include the relatively planar nuclear envelope and the peripheral ER, a network of sheet-like cisternae interconnected with tubules that spread throughout the cytoplasm. The ER is highly dynamic and the shape of its domains as well as their relative content are in constant flux. The multiple forces driving these morphological changes depend on the interaction between the ER and microtubules, membrane fusion and fission events and the action of proteins capable of actively shaping membranes. The interplay between these forces is ultimately responsible for the dynamic morphology of the ER, which in turn is crucial for properly executing the varied functions of this organelle.  相似文献   

16.
Metuzals  J.  Chang  D.  Hammar  K.  Reese  T.S. 《Brain Cell Biology》1997,26(8):529-539
The organization of the cortical endoplasmic reticulum in the squid giant axon was investigated by rapid freeze and freeze-substitution electron microscopy, thereby eliminating the effects of fixatives on this potentially labile structure. Juvenile squid, which have thinner Schwann sheaths, were used in order to achieve freezing deep enough to include the entire axonal cortex. The smooth endoplasmic reticulum is composed of subaxolemmal and deeper cisternae, tubules, tethers and vesicles. The subaxolemmal cisternae make junctional contacts with the axolemma which are characterized by filamentous-granular bridging structures approximately 3 nm in diameter. The subaxolemmal junctions with the axolemma resemble the coupling junctions between the sarcoplasmic reticulum and the T-tubules in muscle. Reconstruction of short series of sections showed that a number of the elements of the endoplasmic reticulum were continuous but numerous separate vesicles were present as well. The morphology of endoplasmic reticulum as described here suggests that it is a highly dynamic entity as well as a Ca2+ sequestering organelle.  相似文献   

17.
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.  相似文献   

18.
In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microtubule (MT)-organizing center by dynein and is spread by outward extension of ER tubules through their association with plus ends of growing MTs. Fusion of membranes into an ER network is dependent on the guanosine triphosphatase atlastin (ATL). NE assembly requires fusion by both ATL and ER-soluble N-ethyl-maleimide–sensitive factor adaptor protein receptors. In mitotic extracts, the ER converts into a network of sheets connected by ER tubules and loses most of its interactions with MTs. Together, these results indicate that fusion of ER membranes by ATL and interaction of ER with growing MT ends and dynein cooperate to generate distinct ER morphologies during the cell cycle.  相似文献   

19.
Ultrastructural changes were studied in the cells undergoing secretory differentiation in zone I of the tubules of the uropygial gland of White Plymouth Rock chickens. A layer of basal cells and four secretory stages are recognized as the cells migrate from the periphery to the lumen of tubules and progressively elaborate a secretion product. Basal cells, containing rough endoplasmic reticulum and free ribosomes, rest on the basement membrane and are the source from which secretory cells arise. Dilated perinuclear cisternae and the proliferation of smooth endoplasmic reticulum in the form of vesicles, invaginated sacs and cusp-shaped cisternae indicate the onset of lipgenesis in stage I cells. The perinuclear cisternae are more dilated and the endoplasmic reticulum is composed on saccules and cisternae in stage II cells. Stage III cells are characterized by concentric lamellae of endoplasmic reticulum surrounding secretory droplets. Dilated cisternae of endoplasmic reticulum and secretory droplets both contain a reticular substance. The perinuclear cisternae of stage III cells have returned to normal dimensions. Large mature lucent secretory droplets, lined with electron-dense material, fill the cytoplasm ostage IV cells which degenerate and release their secretory product into the tubule lumen. Spherical membrane-bound compartments containing a mottled substance of moderate electron density occur in basal cells and all subsequent secretory stages. These mottled bodies are surrounded by saccules of endoplasmic reticulum in stage II cells and are intimately associated with secretory droplets in stage III cells, but there is no evidence that they give rise to secretory droplets and their role in secretory differentiation is unknown.  相似文献   

20.
Young sieve elements from petioles and rachises of Davalliafijiensis Hook were examined with an electron microscope. Evidencewas obtained that implicated both the endoplasmic reticulum(ER) and the Golgi apparatus in the formation of refractivespherules. Numerous connections were observed between smooth,tubular ER and peripheral tubules of the dictyosomes, indicatingthat these two cytoplasmic components are parts of a singleendomembrane system. Davallia fijiensis Hook, endomembrane system, endoplasmic reticulum, dictyosome, refractive spherule, sieve element  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号