首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Unit responses in the medial preoptic region of the anterior hypothalamus and septum to local temperature stimulation of various parts of the skin were studied in chronic experiments on rabbits. The temperature of an area of skin on the back (zone I) and head (zone II) was altered by means of thermodes: heated to 38–40°C and cooled to 22–26°C. Of 111 neurons tested 21 responded to a change of skin temperature (mainly to cooling). Temperature-sensitive hypothalamic neurons were shown to react to temperature stimulation of both skin zones stimulated. The types of the responses recorded are described.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 365–370, July–August, 1981.  相似文献   

2.
Jin  Ming-Xian  Li  De-Yao  Mi  Hualing 《Photosynthetica》2002,40(4):581-586
Temperature dependence (25–50 °C) of chlorophyll (Chl) fluorescence induction, far-red radiation (FR)-induced relaxation of the post-irradiation transient increase in apparent F0, and the trans-thylakoid proton gradients (pH) was examined in maize leaves. Temperatures above 30 °C caused an elevation of F0 level and an enhancement of F0 quenching during actinic irradiation. Millisecond delayed light emission (ms-DLE), which reflects the magnitude of pH, decreased strikingly above 35 °C, and almost disappeared at 50 °C. It indicates that the heat-enhanced quenching of F0 under actinic irradiation could not be attributed mainly to the mechanism of pH-dependent quenching. The relaxation of the post-irradiation transient increase in apparent F0 upon FR irradiation could be decomposed into two exponential components (1 = 0.7–1.8 s, 2 = 2.0–9.9 s). Decay times of both components increased with temperature increasing from 25 to 40–45 °C. The bi-phasic kinetics of FR-induced relaxation of the post-irradiation transient increase in apparent F0 and its temperature dependence may be related to plastoquinone (PQ) compartmentation in the thylakoid membranes and its re-organisation at elevated temperature.  相似文献   

3.
32 West African dwarf goats were exposed in respiration chambers to temperature treatments of 20, 25, 30, 35, 35, 35, 30, 25, 20°C. Each treatment lasted three days. 16 goats were kept in individual pens (I); the others in two group pens of eight animals each (G). During each treatment, heat production and activity were recorded continuously over 48 hours. In addition, feed and water intake, rectal temperature, skin temperature and respiratory rate were measured during each treatment.Compared to 20°C, at 35°C rectal temperature increased from 39.0°C to 39.9°C, respiratory rate from 30 to 260 times. min–1 and skin temperature from 37.1°C to 39.5°C. Hay intake decreased by 40%; concentrates (30 g. kg–0.75. d–1) were always completely consumed. Heat production was higher for the G animals at 20°C and higher for the I animals at 35°C. These differences in heat production between the two groups were reflected in differences in rectal and skin temperature and in respiratory rate but only very slightly in differences in hay intake.Tissue insulation was 0.014 K. m2. W–1 at 30°C and 35°C and 0.022 K. m2. W–1 at 20°C.It is concluded that the reactions of these dwarf goats to high ambient temperatures are not different in principle from those of other domestic ruminants and that they do not exhibit a specific suitability or unsuitability for ambient temperatures as prevailing in West Africa.  相似文献   

4.
Summary In conscious Pekin ducks, carotid and sciatic blood flows, respiratory rate, core and skin temperatures were measured during selective thermal stimulations of the spinal cord and rostral brain stem in thermoneutral (20 °C) and warm (32 °C) ambient conditions.At thermoneutral ambient temperature selective heating of the spinal cord by 2–3 °C (to 43–44 °C) increased the carotid blood flow by 138% and the sciatic blood flow by 46%. Increase in blood flows was correlated with increased breathing rate and beak and web skin temperatures.Selective cooling of the spinal cord at warm ambient temperatures and panting reduced the blood flow in both arteries and decreased the breathing rate.Heating or cooling of the brain stem showed generally very weak but otherwise similar responses as thermal stimulation of the spinal cord. In one duck out of six there was a marked effect on regional blood flow during brain stimulation.The results show that thermal stimulation of the spinal cord exerts a marked influence on regional blood flow important in thermoregulation, whereas the lower brain stem shows only a weak thermosensitivity, and stimulation caused only small cardiovascular changes of no major consequence in thermoregulation.  相似文献   

5.
Temperature transduction in peripheral cold receptors and processing of peripheral temperature signals in the spinal cord were studied in cats and rats. The temperature dependence of the generator potential is attributed to different temperature coefficients of an electrogenic Na-efflux and the passive Na-influx. Cold receptor activity and particularly its bursting pattern is considerably modulated by the local Ca-concentration, but the effect of elevated Ca-concentration is abolished by the ATPase blocker ouabain. — The peripheral temperature signals from the scrotal skin of rats are transformed in dorsal horn neurones (DHN) into temperature reactions, which occur only above (warm reaction) or below (cold reaction) a certain temperature threshold and are limited to an operational range of 1–4°C. Convergency of different temperature inputs were observed in one and the same DHN. Supraspinal control of temperature reactive DHN appears to be complex but predominantly excitatory.Presented at the Eighth International Congress of Biometeorology, 9–14 September 1979, Shefayim, Israel.  相似文献   

6.
Summary Changing the temperature from 10–40 °C modifies the transmission at an established monosynaptic connection between the fast extensor tibiae (FETi) and flexor tibiae motor neurons in the metathoracic ganglion of the locustSchistocerca gregaria (Forskål). Striking changes occur to the shape of the spikes, to membrane resistance, to the synaptic delay, and to the evoked synaptic potentials.In the presynaptic FETi motor neuron, raising the temperature reduces the amplitude of an antidromic spike recorded in the soma by a factor of 10 (40 mV to 4 mV), reduces the time taken to reach peak amplitude by 5 (3.5 to 0.7 ms) and decreases the duration at half maximum amplitude by 0.5. The conduction velocity of the spike in the axon is increased by 50% from 10 °C to 40 °C. Orthodromic spikes are affected by temperature in a similar way to the antidromic spikes.The membrane resistance of both pre- and postsynaptic motor neurons falls as the temperature is raised. The membrane resistance of FETi falls by a factor of 4 (about 4 M at 10 °C to 1 M at 40 °C). A contributory component to this fall could be the increase in the frequency of synaptic potentials generated as a result of inputs from other neurons. No temperature dependence could be demonstrated on the voltage threshold relative to resting potential for evoking orthodromic spikes, but because the resistance changes, the current needed to achieve this voltage must be increased at higher temperatures.The latency measured from the peak of the spike in the soma of FETi to the start of the EPSP in the soma of a flexor motor neuron decreases by a factor of 20 (10 ms at 10 °C to 0.5 ms at 40 °C).In a postsynaptic flexor tibiae motor neuron, the amplitude of the evoked synaptic potential increases by a factor of 3.4 (5 mV to 17 mV), its duration at half maximum amplitude decreases by 3 (7 ms at 12 °C to 2.3 ms at 32 °C) and its rate of rise increases by 3. An increased likelihood that spikes will occur in the flexor contributes to the enhanced amplitude of the compound EPSP at temperatures above 20 °C.Abbreviation FETi fast extensor tibiae motor neuron  相似文献   

7.
Summary Gossypium hirsutum L. var. Delta Pine 61 was cultivated in controlled-environment chambers at 1000–1100 mol photosynthetically active photons m-2 s-1 (medium photon flux density) and at 1800–2000 mol photons m-2 s-1 (high photon flux density), respectively. Air temperatures ranged from 20° to 34°C during 12-h light periods, whereas during dark periods temperature was 25° C in all experiments. As the leaf temperature decreased from about 33° to 27° C, marked reductions in dry matter production, leaf chlorophyll content and photosynthetic capacity occurred in plants growing under high light conditions, to values far below those in plants growing at 27° C and medium photon flux densities. The results show that slightly suboptimum temperatures, well above the so-called chilling range (0–12° C), greatly reduce dry matter production in cotton when combined with high photon flux densities equivalent to full sunlight.Abbreviations DW dry weight - F v variable fluorescence yield - F M maximum fluorescence yield - PFD photon flux density (400–700 nm)  相似文献   

8.
Plants of Solanum tuberosum L. potato do not cold acclimate when exposed to low temperature such as 5°C, day/night. When ABA (45 M) was added to the culture medium, stem-cultured plantlets of S. tuberosum, cv. Red Pontiac, either grown at 20°C/15°C, day/night, or at 5°C, increased in cold hardiness from –2°C (killing temperature) to –4.5°C. The increase in cold hardiness could be inhibited in both temperature regimes if cycloheximide (70 M) was added to the culture medium at the inception of ABA treatment. Cycloheximide did not inhibit cold hardiness development, however, when it was added to the culture medium 3 days after ABA treatment.When pot-grown plants were foliar sprayed with mefluidide (50 M), ABA content increased from 10 nmol to 30 nmol g–1 dry weight and plants increased in cold hardiness from –2°C to about –3.5°C. The increases in free ABA and cold hardiness occurred only in plants grown at 20°C/15°C; neither ABA nor cold hardiness increased in plants grown at 5°C.The results suggest that an increase in ABA and a subsequent de novo synthesis of proteins are required for the development of cold hardiness in S. tuberosum regardless of temperature regime, and that the inability to synthesize ABA at low temperature, rather than protein synthesis, appears to be the reason why S. tuberosum does not cold acclimate.  相似文献   

9.
Conformational change of bovine serum albumin by heat treatment   总被引:1,自引:0,他引:1  
The thermal denaturation of bovine serum albumin (BSA) was studied at pH 2.8 and 7.0 in the range of 2–65°C. The relative proportions of -helix, -structure, and disordered structure in the protein conformation were determined as a function of temperature, by the curve-fitting method of circular dichroism spectra. With the rise of temperature at pH 7.0, the proportion of -helix decreased above 30°C and those of -structure and disordered structure increased in the same temperature range. The structural change was reversible in the temperature range below 45°C. However, the structural change was partially reversible upon cooling to room temperature subsequent to heating at 65°C. On the other hand, the structural change of BSA at pH 2.3 was completely reversible in the temperature range of 2–65°C, probably because the interactions between domains and between subdomains might disappear due to the acid expansion. The secondary structure of disulfide bridges-cleaved BSA remained unchanged during the heat treatment up to 65°C at pH 2.8 and 7.0.  相似文献   

10.
Summary The combined effect of various temperatures and light intensities on the growth of seven species of antarctic diatoms in culture has been studied. With the exception of Chaetoceros deflandrei whose thermal tolerance is fairly good, these obligatory psychrophils cannot survive in temperatures above 6° to 9° C. Their mean growth rate is relatively low, between 0.24 div d–1 for Corethron criophilum and 0.63 div d–1 for C. deflandrei. Regardless of light intensity, growth rate increased with the temperature to reach a maximum between 3° and 5° C. The highest rates were obtained between 115 and 220 mol m–2 s–1 with 0.38 div d–1 for C. criophilum, 0.56 div d–1 for Synedra sp. and between 0.71 and 0.88 div d–1 for the other 5 species. A reduction in light intensity from 220 to 46 mol m–2 s–1 slowed growth by nearly 50%. These results suggest that the combined effect of temperature and light is one of the factors involved in the limitation of antarctic phytoplankton growth. The low temperatures of the environment do not permit rapid growth, which, even under optimal light conditions remains low. In addition, in the euphotic layer, the overall light energy available for algae is considerably reduced due to turbulence, a factor which exacerbates the reduced growth rate.  相似文献   

11.
One year old, individually tagged Lake Inari Arctic charr, Salvelinus alpinus, were reared at three constant temperatures, 10.3°C, 14.1°C and 18.1°C, over four weeks. Blood samples were collected from a group of unstressed fish after the cultivation period at the same time as another group of fish were subjected to acute handling stress treatment (2min netting in air and 40min (± 20min) recovery period in water). Plasma cortisol, calcium, sodium, potassium and chloride concentrations were measured on both groups. To study the effect of minor daily temperature fluctuations on the stress response of Arctic charr, two additional daily fluctuating temperature (14 ± 1°C, 18 ± 1°C) treatments were established. The samples were taken in the same manner as those in the constant temperature treatments. Growth was fastest at 10.3–14.1°C and clearly lower at 18.1°C. Pre-stress plasma cortisol levels were low but increased slightly with increasing temperature. After stressor treatment, the cortisol concentrations of Arctic charr were clearly higher in all temperature treatments but there were no significant differences in plasma cortisol concentrations among temperatures. Plasma calcium levels increased during the stress treatment but temperature did not modulate this effect. The plasma potassium concentrations declined at 14.1–18.1°C after acute stress but the response was not affected by temperature within this range. The concentrations of sodium and chloride were unaffected by acute stress. Temperatures of 10.3–18.1°C and fluctuating temperature treatments had no influence on any plasma ion concentrations. Arctic charr were able to maintain the plasma ion concentrations in fresh water at 10.3–18.1°C and after acute stress treatment. Results indicate that the optimum temperature for growth of Arctic charr has little to do with the plasma ion concentrations or the ability to maintain those concentrations after short-term stress. The plasma cortisol responses further indicate that the optimum temperature for growth of Arctic charr is not related to the suppressed ability to react to an acute handling stressor. Temperature fluctuations did not cause significant differences in cortisol levels when compared with constant temperatures.  相似文献   

12.
A method for isolating extracellular glucose oxidase from the fungus Penicillium funiculosum 46.1 using ultrafiltration membranes was developed. Two samples of the enzyme with a specific activity of 914–956 IU were obtained. The enzyme exhibited a high catalytic activity at pH above 6.0. The effective rate constant of glucose oxidase inactivation at pH 2.6 and 16°C was 2.74 × 10–6 s–1. This constant decreased significantly as the pH of the medium increased (4.0–10.0). The temperature optimum for glucose oxidase–catalyzed -D-glucose oxidation was in the range 30–65°C. At temperatures below 30°C, the activation energy for -D-glucose oxidation was 6.42 kcal/mol; at higher temperatures, this parameter was equal to 0.61 kcal/mol. Kinetic parameters of glucose oxidase–catalyzed -D-glucose oxidation depended on the initial concentration of the enzyme in the solution. Glucose oxidase also catalyzed the oxidation of 2-deoxy-D-glucose, maltose, and galactose.  相似文献   

13.
The thermal fields and biopotentials of the brain were studied in 11 healthy subjects in the states of quiet wakefulness and sleep (stages I–IV). To this end, a new method of dynamic radiomapping was applied in parallel with the traditional method of EEG recording. The method of dynamic radiomapping is based on measuring the brain thermal radiation in the decimeter (40 cm) wave range. It allows the integral brain temperature to be recorded from deep inside and up to 2.5 cm from the surface with the help of 12 antennas applied to the skin. The temperature of the cerebral cortex of the human subject in the state of quiet wakefulness varied stochastically in the range of deviations of ±0.3°C in all areas. Changes in the brain functional state, i.e., the transition from wakefulness to sleep, were accompanied by either an increase in the variation range to ±0.5°C or the appearance of stationary foci of heating (by 0.9–1.3°C) or cooling (by –0.7°C) of individual locations and amplitudes.  相似文献   

14.
Summary The decreasing effect of -adrenergic blockade on skin resistance to vapor diffusion and the onset of cutaneous water evaporation in the pigeon (Columba livia) was investigated. Oral administration of 1, 2.3 and 5 mg propranolol to pigeons (268±53 g) initiated intensive trans-cutaneous water evaporation (CWE) up to 29.1 mg H2O·cm–2·h–1 in resting birds at 30°C air temperature (Ta), but had only a slight effect on CWE of birds exposed to 50 °C Ta.After 7 h of effective -adrenergic blockade (oral administration of 5 mg propranolol), skin and body temperature stabilized at 39.0±0.5 °C and 41.0±0.7 °C, compared to 40.2±0.8 °C and 41.9±0.6 °C in the control group, respectively. A slight hypothermia was accompanied by feather fluffing.Intradermal injection of 0.001, 0.01 and 0.12 mg propranolol also caused intensive CWE. Local -adrenergic blockade in relatively low blocker doses (0.001 and 0.01 mg propranolol) decreased skin resistance from a high value of 44.5 s·cm–1 to about 6.0 s·cm–1, and caused a sharp increase in CWE from a control value of about 4 to a high of 26.4 mg H2O·cm–2·h–1 during the first two hours of exposure to 30°C Ta.The possible role of -adrenergic blockade in regulation of trans-cutaneous water evaporation of latent heat dissipation is discussed.  相似文献   

15.
Palynological investigation of the marine core, GeoB 1008-3, from near the mouth of the Congo river (6°35.6S/10°19.1E), provides information about the changes in vegetation and climate in West Equatorial Africa during the last 190 ka. The pollen diagram is divided into zones 1–6 which are considered to correspond in time with the marine isotope stages 1–6. Oscillations in temperature and moisture are indicated during the cold stage 6. During stage 5, two cooler periods (5d and 5b) can be shown with an expansion of Podocarpus forests to lower elevations on the expense of lowland rain forest. Extended mangrove swamps existed along the coast in times of high sea level (stages 5 and 1).  相似文献   

16.
Three cyanobacterial strains originating from different habitats were subjected to temperature shift exposures and monitored for levels of proline, thiol and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thermophile Mastigocladus laminosus (growth optimum, 40 °C), raised the proline level 4.2-fold at low temperature (20 °C), for the psychrophile Nostoc 593 (growth optimum, 20 °C), it was raised 8-fold at 40 °C while in the mesophile Nostoc muscorum (growth optimum, 30 °C), the imino acid level increased 2.3-fold during temperature shiftdown to 20 °C or 3.5-fold in sets facing shiftup (40 °C). Alterations in thiol levels in the above strains were in line with proline. It is suggested that such fluctuations reflect metabolic shifts as a response to stress. Interestingly, GAPDH activity was maximum at the respective growth temperature optimum of M. laminosus (122 nmol NADPH oxidized min –1 mg –1 protein) and Nostoc 593 (141 nmol NADPH oxidized min –1 mg –1 protein) while in N. muscorum, it increased at 40 °C (101 nmol NADPH oxidized min –1 mg –1 protein) and to 93.3 nmol NADPH oxidized min –1 mg –1 protein (20 °C) relative to 86 nmol NADPH oxidized min –1 mg –1 protein at 30 °C. It seems that extremophiles maintain the GAPDH activity/level during growth at their respective temperatures optimal while the mesophile increases it in order to cope up with temperature-stress.  相似文献   

17.
Summary We studied the effect of temperature on the production of an extracellular neutral metalloproteinase of Bacillus megaterium in a laboratory fermentor under constant aeration and pH. The optimal temperature for growth (35–38° C) was higher than that for the synthesis of proteinase during exponential growth (below 31° C). The critical biomass concentration at which the exponential growth terminated decreased with increase in cultivation temperature. The specific rate of proteinase synthesis decreased when the critical biomass concentration was achieved. The observed decrease in proteinase synthesis was related to the cultivation temperature. The temperature also influenced the level of mRNA coding for proteinase. We formulated a mathematical model of cultivation describing the dependence of growth and proteinase synthesis on dissolved oxygen and temperature. The parameters of the model were identified for temperature intervals from 21 to 41° C using a computer. The optimum temperature for the enzyme production was 21° C. The productivity (enzyme activity/time) was maximal at 24–28° C. When optimizing the temperature profile of cultivation, we designed a suboptimal solution represented by a linear temperature profile. We have found that under conditions of continuous decrease in temperature, the maximal production of the proteinase was achieved at a broad range of temperature (26–34° C) when the rate of temperature decrease was 0.2–0.8° C/h. The initial optimal temperature for the enzyme productivity was in the range of 32–34° C. The optimum temperature decrease was 0.8° C/h. Offprint requests to: J. Chaloupka  相似文献   

18.
In order to develop statistical models to predict respiratory heat loss in dairy cattle using simple physiological and environmental measurements, 15 Holstein cows were observed under field conditions in a tropical environment, in which the air temperature reached up to 40°C. The measurements of latent and sensible heat loss from the respiratory tract of the animals were made by using a respiratory mask. The results showed that under air temperatures between 10 and 35°C sensible heat loss by convection decreased from 8.24 to 1.09 W m–2, while the latent heat loss by evaporation increased from 1.03 to 56.51 W m–2. The evaporation increased together with the air temperature in almost a linear fashion until 20°C, but it became increasingly high as the air temperature rose above 25°C. Convection was a mechanism of minor importance for respiratory heat transfer. In contrast, respiratory evaporation was an effective means of thermoregulation for Holsteins in a hot environment. Mathematical models were developed to predict both the sensible and latent heat loss from the respiratory tract in Holstein cows under field conditions, based on measurements of the ambient temperature, and other models were developed to predict respiration rate, tidal volume, mass flow rate and expired air temperature as functions of the ambient temperature and other variables.This paper forms part of A. S. Campos Maias doctoral thesis.  相似文献   

19.
Summary The dendritic outer segment of the cell which is most likely the cold unit in the poreless coeloconic sensilla onLocusta migratoria antennae, has finger-like projections up to 1.5 m long and 0.13 m thick (Fig. 1). This unit responds to constant temperature, to slowly changing temperature and to step changes. Under stationary conditions impulse frequency attained 35 imp/s. Between 14 °C and 41 °C the higher frequencies were associated with the higher temperatures (Fig. 5). In this range the differential sensitivity is positive but not large: + 0.8 (imp/s)/°C. Its resolving power for steady temperature is 4.7 °C.Downward step changes produced by shifting between airstreams at different temperatures yield far higher frequencies (Figs. 2, 3). Step amplitudes were between –0.1 °C and –12 °C; the conditioning temperature from which the steps were initiated, was between 16 °C and 33 °C. Frequency peaked during the first 50 ms after stimulus onset (Fig. 2) and reached its highest values (310–340 imp/s) at initial temperatures above 30 °C and steps larger than –10 °C (Fig. 4). The mean differential sensitivity from 23 curves was –19 (imp/s)/°C and the resolving power 0.6 °C.During slowly changing temperature the impulse frequency was governed by two parameters simultaneously: ambient temperature and its rate of change. Rates were between 0.001 °C/s or less, and 0.03 °C/s in either direction. Frequency was higher during slow cooling at a given temperature than during slow warming (Fig. 6). The average differential sensitivity to the rate of change was –210 (imp/s)/(°C/s). Further, the larger responses to cooling developed at lower ambient temperatures (differential sensitivity: –1.0 (imp/s)/°C). It is to be noted that this sign is negative, in contrast to the sign for differential sensitivity to constant temperature and also for the influence of initial temperature on the response to downward step changes.Abbreviations b Slope of characteristic curve, differential sensitivity - F impulse frequency in imp/s - imp/s impulses/s - P w partial pressure of water vapor in torr - r correlation coefficient - T temperature in °C - T T-step - x resolving power in °C  相似文献   

20.
The experiments performed on rat brain slices have shown that cold adaptation of an animal influences the thermosensitivity of hypothalamic medial preoptical neurons. The adaptation is followed by an increase in the proportion of 38–41°C-thermoresponsive neurons and by a decrease in the proportion of 35–38°C-thermoresponsive units. In control animals, noradrenaline (NA) increased the responses of hypothalamic neurons to the action of 35–38°C temperature and decreased them to the action of 38–41°C temperature. Cold adaptation prevented the effects of NA on neuronal thermosensitivity, which suggests that their NA sensitivity is modified by cold adaptation.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 171–176, May–June, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号