首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate synthase catalyzes glutamate formation from 2-oxoglutarate plus glutamine and plays an essential role when glutamate biosynthesis by glutamate dehydrogenase is not possible. Glutamate synthase activity has been determined in a number of Neurospora crassa mutant strains with various defects in nitrogen metabolism. Of particular interest were two mutants phenotypically mute except in an am (biosynthetic nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase deficient, glutamate requiring) background. These mutants, i and en-am, are so-called enhancers of am; they have been redesignated herein as en(am)-1 and en(am)-2, respectively. Although glutamate synthase levels in en(am)-1 were essentially wild type, the en(am)-2 strain was devoid of glutamate synthase activity under all conditions examined, suggesting that en(am)-2 may be the structural locus for glutamate synthase. Regulation of glutamate synthase occurred to some extent, presumably in response to glutamate requirements. Glutamate starvation, as in am mutants, led to enhanced activity. In contrast, glutamine limitation, as in gln-1 mutants, depressed glutamate synthase levels.  相似文献   

2.
Mutants of Salmonella typhimurium defective in glutamate dehydrogenase activity were isolated in parent strains lacking glutamate synthase activity by localizcd mutagenesis or by a general mutagenesis combined with a cycloserine enrichment for glutamate auxotrophs. Two mutants with temperature-sensitive phenotypes had glutamate dehydrogenase activities that were more thermolabile than that of an isogenic control strain. Eight other mutants had less than 10% of the wild-type glutamate dehydrogenase activity. All the mutations were cotransducible with a Tn10 element (zed-2:Tn10) located at approximately 23 U on the S. typhimurium linkage map. These data strongly indicate that this region contains the structural gene (gdhA) for glutamate dehydrogenase.  相似文献   

3.
Salmonella typhimurium cells require glutamate synthase activity for growth in media containing a growth rate-limiting nitrogen source. Although this enzyme plays a critical role in ammonia assimilation, little is known about the organization and regulation of the structural genes for its two subunits. To identify the location of the structural genes, mutants having heat-labile glutamate synthase activities were isolated and characterized. Mutations that altered glutamate synthase activity were mapped at 69 U on the S. typhimurium chromosome. Four strains with independent Tn10 insertions in this region were constructed and used for mutant selection and for positioning mutations affecting glutamate synthase activity relative to other genetic markers. In contrast to results obtained with Escherichia coli mutants, there was no linkage between mutations affecting glutamate synthase activity and the argG gene. The results of a combination of transduction experiments demonstrated the gene order argG-glnF-gltB-cod-argR-envB-aroE for S-typhimurium.  相似文献   

4.
B Austin  R M Hall  B M Tyler 《Gene》1990,93(1):157-162
To provide a dominant selectable marker for transformation of Neurospora crassa strains lacking specific auxotrophic mutations, we have engineered the bleomycin (Bm) resistance-encoding gene (ble) from the bacterial transposon Tn5 for expression in N. crassa. The coding region of the ble gene was fused to the promoter and terminator regions of the N. crassa am gene. In some vectors, multiple cloning sites were placed flanking the ble gene to provide a versatile ble cassette. When introduced into N. crassa, the hybrid ble gene conferred resistance to greater than 15 micrograms Bm/ml. Under optimal conditions, the levels of Bm required (2.5 micrograms/ml) make even large-scale transformation experiments very economical. Aspergillus nidulans could also be efficiently transformed to Bm resistance using the N. crassa ble gene fusion. Since the ble gene functions in both N. crassa and A. nidulans, the gene should be useful as a transformation marker for the many other filamentous fungi which are sensitive to Bm.  相似文献   

5.
N-Acetylglutamate synthase, an early enzyme of the arginine pathway, provides acetylglutamate for ornithine synthesis in the so-called "acetylglutamate cycle." Because acetylglutamate is regenerated as ornithine is formed, the enzyme has only a catalytic or anaplerotic role in the pathway, maintaining "bound" acetyl groups during growth. We have detected this enzyme in crude extracts of Neurospora crassa and have localized it to the mitochondria along with other ornithine biosynthetic enzymes. The enzyme is bound to the mitochondrial membrane. The enzyme has a pH optimum of 9.0 and Km values for glutamate and CoASAc of 6.3 and 1.6 mM, respectively. It is feedback-inhibited by L-arginine (I0.5 = 0.16 mM), and its specific activity is augmented 2-3-fold by arginine starvation of the mycelium. Mutants of the newly recognized arg-14 locus lack activity for the enzyme. Because these mutants are complete auxotrophs, we conclude that N-acetylglutamate synthase is an indispensible enzyme of arginine biosynthesis in N. crassa. This work completes the assignment of enzymes of the arginine pathway of N. crassa to corresponding genetic loci. The membrane localization of the enzyme suggests a novel mechanism by which feedback inhibition might occur across a semipermeable membrane.  相似文献   

6.
7.
Glutamine synthetase derived from two Neurospora crassa glutamine auxotrophs was characterized. Previous genetic studies indicated that the mutations responsible for the glutamine auxotrophy are allelic and map in chromosome V. When measured in crude extracts, both mutant strains had lower glutamine synthetase specific activity than that found in the wild-type strain. The enzyme from both auxotrophs and the wild-type strain was partially purified from cultures grown on glutamine as the sole nitrogen source, and immunochemical studies were performed in crude extracts and purified fractions. Quantitative rocket immunoelectrophoresis indicated that the activity per enzyme molecule is lower in the mutants than in the wild-type strain; immunoelectrophoresis and immunochemical titration of enzyme activity demonstrated structural differences between the enzymes from both auxotrophs. On the other hand, the monomer of glutamine synthetase of both mutants was found to be of a molecular weight similar to that of the wild-type strain. These data indicate that the mutations are located in the structural gene of N. crassa glutamine synthetase.  相似文献   

8.
Ornithine decarboxylase (ODC) (EC 4.1.1.17) is an early enzyme of polyamine synthesis, and its activity rises quickly at the onset of growth and differentiation in most eucaryotes. Some have speculated that the enzyme protein may have a role in the synthesis of rRNA in addition to its role in catalyzing the decarboxylation of ornithine (G. D. Kuehn and V. J. Atmar, Fed. Proc. 41:3078-3083, 1982; D. H. Russell, Proc. Natl. Acad. Sci. USA 80:1318-1321, 1983). To test this possibility, we sought mutational evidence for the indispensability of the ODC protein for normal growth of Neurospora crassa. We found three new, ODC-deficient mutants that lacked ODC protein. Among these and by reversion analysis of an earlier set of mutants, we found that two ODC-deficient mutants carried nonsense mutations in the ODC structural gene, spe-1. Allele LV10 imparted a complete deficiency for enzyme activity (less than 0.006% of normal) and had no detectable ODC antigen. Allele PE4 imparted a weak activity to cells (0.1% of derepressed spe+ cultures) and encoded a lower-molecular-weight ODC subunit (Mr = 43,000) in comparison to that of the wild-type strain (Mr = 53,000). Strains carrying either mutation, like other spe-1 mutants, grew at a normal rate in exponential culture if the medium was supplemented with spermidine, the main end product of the polyamine pathway in N. crassa. Unless an antigenically silent, N-terminal fragment with an indispensable role persists in the LV10-bearing mutant, we conclude that the ODC protein has no role in the vegetative growth of this organism other than the synthesis of polyamines. The data extend earlier evidence that spe-1 is the structural gene for ODC in N. crassa. The activity found in mutants bearing allele PE4 suggests that the amino acids nearest the carboxy terminus do not contribute to the active site of the enzyme.  相似文献   

9.
10.
The expression of thymidine kinase in fungi, which normally lack this enzyme, will greatly aid the study of DNA metabolism and provide useful drug-sensitive phenotypes. The herpes simplex virus type-1 thymidine kinase gene ( tk ) was expressed in Neurospora crassa. tk was expressed as a fusion to N.crassa arg-2 regulatory sequences and as a hygromycin phosphotransferase-thymidine kinase fusion gene under the control of cytomegalovirus and SV40 sequences. Only strains containing tk showed thymidine kinase enzyme activity. In strains containing the arg-2 - tk gene, both the level of enzyme activity and the level of mRNA were reduced by growth in arginine medium, consistent with control through arg-2 regulatory sequences. Expression of thymidine kinase in N.crassa facilitated radioactive labeling of replicating DNA following addition of [3H]thymidine or [14C]thymidine to the growth medium. Thymidine labeling of DNA enabled demonstration that hydroxyurea can be used to block replication and synchronize the N.crassa mitotic cycle. Strains expressing thymidine kinase were also more sensitive than strains lacking thymidine kinase to anticancer and antiviral nucleoside drugs that are activated by thymidine kinase, including 5-fluoro-2'-deoxyuridine, 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouridine and trifluorothymidine. Finally, expression of thymidine kinase in N. crassa enabled incorporation of bromodeoxyuridine into DNA at levels sufficient to separate newly replicated DNA from old DNA using equilibrium centrifugation.  相似文献   

11.
12.
13.
14.
Two kynureninase activities are known in Neurospora crassa, one of which (kynureninase I) is inducible, the other (kynureninase II) being constitutive. A method is described for the isolation of low-kynureninase mutants of N. crassa. When grown on an inducer, the mutants show significantly less kynureninase I activity compared with wild type, whereas constitutive kynureninase II activity is unaffected. Since a low level of kynureninase I activity remains in the mutants examined, the mutations may be in a regulatory gene or genes. Other experiments are described concerning the molecular weights of the two enzymes and the intracellular localization and specificity of kynureninase II.  相似文献   

15.
The regulation of the glutamate dehydrogenases was investigated in wild-type Neurospora crassa and two classes of mutants altered in the assimilation of inorganic nitrogen, as either nitrate or ammonium. In the wild-type strain, a high nutrient carbon concentration increased the activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-glutamate dehydrogenase and decreased the activity of reduced nicotinamide adenine dinucleotide (NADH)-glutamate dehydrogenase. A high nutrient nitrogen concentration had the opposite effect, increasing NADH-glutamate dehydrogenase and decreasing NADPH-glutamate dehydrogenase. The nit-2 mutants, defective in many nitrogen-utilizing enzymes and transport systems, exhibited low enzyme activities after growth on a high sucrose concentration: NADPH-glutamate dehydrogenase activity was reduced 4-fold on NH(4)Cl medium, and NADH-glutamate dehydrogenase, 20-fold on urea medium. Unlike the other affected enzymes of nit-2, which are present only in basal levels, the NADH-glutamate dehydrogenase activity was found to be moderately enhanced when cells were grown on a low carbon concentration. This finding suggests that the control of this enzyme in nit-2 is hypersensitive to catabolite repression. The am mutants, which lack NADPH-glutamate dehydrogenase activity, possessed basal levels of NADH-glutamate dehydrogenase activity after growth on urea or l-aspartic acid media, like the wild-type strain, and possessed moderate levels (although three- to fourfold lower than the wild-type strain) on l-asparagine medium or l-aspartic acid medium containing NH(4)Cl. These regulatory patterns are identical to those of the nit-2 mutants. Thus, the two classes of mutants exhibit a common defect in NADH-glutamate dehydrogenase regulation. Double mutants of nit-2 and am had lower NADH-glutamate dehydrogenase activities than either parent. A carbon metabolite is proposed to be the repressor of NADH-glutamate dehydrogenase in N. crassa.  相似文献   

16.
Ten mutants of Aspergillus nidulans lacking nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (NAD-GDH) have been isolated, and their mutations (gdhB1 through gdhB10) have been shown to lie in the gdhB gene. In addition, a temperature-sensitive gdhB mutant (gdhB11) has been isolated. A revertant (designated R-5) of the mutant gdhB1 bears an additional lesion in the gdhB gene and has altered NAD-GDH activity with altered Km values for ammonia or ammonium ions and for alpha-ketoglutarate. These results suggest that gdhB specifies a structural component for NAD-GDH. The growth characteristics of gdhB mutants indicate the routes by which amino acids are utilized as nitrogen and carbon energy sources. The properties are described of the double mutants bearing the mutations gdhB1 and gdhA1 or tamA119, which have low NADP-GDH activity.  相似文献   

17.
The lysosomal enzyme alpha-mannosidase-1 is one of the earliest developmentally controlled gene products in Dictyostelium discoideum. Although this enzyme is synthesized throughout the first 20 h of development, it is not required for complete morphogenesis, since structural gene (manA) mutants lacking activity develop normally. We isolated six strains deficient in alpha-mannosidase-1 activity which, unlike structural gene mutants, fail to aggregate. Fruiting revertants of these strains accumulate wild-type levels of alpha-mannosidase-1 activity, suggesting that both the enzymatic and morphological defects are caused by single mutations in nonstructural genes essential for early development. Direct genetic evidence for mutations outside of the structural gene was obtained by complementation analysis. We used alpha-mannosidase-1-specific monoclonal antibodies to analyze the biochemical defects in these mad (alpha-mannosidase-1-deficient) mutants. All mad mutants show a significantly reduced relative rate of enzyme precursor biosynthesis. The mad-404 mutation results in a complete lack of precursor biosynthesis, as well as a lack of functional alpha-mannosidase-1 mRNA. In some cases, however, the enzymatic defect results from improper post-translational modification which affects precursor processing. We conclude that a small number of aggregation-essential genes are involved in regulating the synthesis, modification, and processing of alpha-mannosidase-1 during development.  相似文献   

18.
Neurospora crassa mitochondria use a branched electron transport system in which one branch is a conventional cytochrome system and the other is an alternative cyanide-resistant, hydroxamic acid-sensitive oxidase that is induced when the cytochrome system is impaired. We used a monoclonal antibody to the alternative oxidase of the higher plant Sauromatum guttatum to identify a similar set of related polypeptides (Mr, 36,500 and 37,000) that was associated with the alternative oxidase activity of N. crassa mitochondria. These polypeptides were not present constitutively in the mitochondria of a wild-type N. crassa strain, but were produced in high amounts under conditions that induced alternative oxidase activity. Under the same conditions, mutants in the aod-1 gene, with one exception, produced apparently inactive alternative oxidase polypeptides, whereas mutants in the aod-2 gene failed to produce these polypeptides. The latter findings support the hypothesis that aod-1 is a structural gene for the alternative oxidase and that the aod-2 gene encodes a component that is required for induction of alternative oxidase activity. Finally, our results indicate that the alternative oxidase is highly conserved, even between plant and fungal species.  相似文献   

19.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by helping the intron RNA fold into the catalytically active structure. The regions required for splicing include an idiosyncratic N-terminal extension, the nucleotide-binding fold domain, and the C-terminal RNA-binding domain. Here, we show that the idiosyncratic N-terminal region is in fact comprised of two functionally distinct parts: an upstream region consisting predominantly of a predicted amphipathic alpha-helix (H0), which is absent from bacterial tyrosyl-tRNA synthetases (TyrRSs), and a downstream region, which contains predicted alpha-helices H1 and H2, corresponding to features in the X-ray crystal structure of the Bacillus stearothermophilus TyrRS. Bacterial genetic assays with libraries of CYT-18 mutants having random mutations in the N-terminal region identified functionally important amino acid residues and supported the predicted structures of the H0 and H1 alpha-helices. The function of N and C-terminal domains of CYT-18 was investigated by detailed biochemical analysis of deletion mutants. The results confirmed that the N-terminal extension is required only for splicing activity, but surprisingly, at least in the case of the N. crassa mitochondrial (mt) large ribosomal subunit (LSU) intron, it appears to act primarily by stabilizing the structure of another region that interacts directly with the intron RNA. The H1/H2 region is required for splicing activity and TyrRS activity with the N. crassa mt tRNA(Tyr), but not for TyrRS activity with Escherichia coli tRNA(Tyr), implying a somewhat different mode of recognition of the two tyrosyl-tRNAs. Finally, a CYT-18 mutant lacking the N-terminal H0 region is totally defective in binding or splicing the N. crassa ND1 intron, but retains substantial residual activity with the mt LSU intron, and conversely, a CYT-18 mutant lacking the C-terminal RNA-binding domain is totally defective in binding or splicing the mt LSU intron, but retains substantial residual activity with the ND1 intron. These findings lead to the surprising conclusion that CYT-18 promotes splicing via different sets of interactions with different group I introns. We suggest that these different modes of promoting splicing evolved from an initial interaction based on the recognition of conserved tRNA-like structural features of the group I intron catalytic core.  相似文献   

20.
Manipulation of the CO2 concentration of the atmosphere allows the selection of photorespiratory mutants from populations of seeds treated with powerful mutagens such as sodium azide. So far, barley lines deficient in activity of phosphoglycolate phosphatase, catalase, the glycine to serine conversion, glutamine synthetase, glutamate synthase, 2-oxoglutarate uptake and serine: glyoxylate aminotransferase have been isolated. In addition one line of pea lacking glutamate synthase activity and one barley line containing reduced levels of Rubisco are available. The characteristics of these mutations are described and compared with similar mutants isolated from populations of Arabidopsis. As yet, no mutant lacking glutamine synthetase activity has been isolated from Arabidopsis and possible reasons for this difference between barley and Arabidopsis are discussed. The value of these mutant plants in the elucidation of the mechanism of photorespiration and its relationships with CO2 fixation and amino acid metabolism are highlighted.Abbreviations GS cytoplasmic glutamine synthetase - GS2 chloroplastic glutamine synthetase - PFR Photon fluence rate - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP Ribulose-1,5-bisphosphate - SGAT serine:glyoxylate aminotransferase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号