首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pancreatic acini loaded with the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to examine the effect of Ca2(+)-mobilizing agonists on the activity of acid-base transporters in these cells. In the accompanying article (Muallen, S., and Loessberg, P. A. (1990) J. Biol. Chem. 265, 12813-12819) we showed that in 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES)-buffered medium the main pHi regulatory mechanism is the Na+/H+ exchanger, a while in HCO3(-)-buffered medium pHi is determined by the combined activities of a Na+/H+ exchanger, a Na(+)-HCO3- cotransporter and a Cl-/HCO3- exchanger. In this study we found that stimulation of acini with Ca2(+)-mobilizing agonists in HEPES or HCO3(-)-buffered media is followed by an initial acidification which is independent of any identified plasma membrane-located acid-base transporting mechanism, and thus may represent intracellularly produced acid. In HEPES-buffered medium there was a subsequent large alkalinization to pHi above that in resting cells, which could be attributed to the Na+/H+ exchanger. Measurements of the rate of recovery from acid load indicated that the Na+/H+ exchanger was stimulated by the agonists. In HCO3(-)-buffered medium the alkalinization observed after the initial acidification was greatly attenuated. Examination of the activity of each acid-base transporting mechanism in stimulated acini showed that in HCO3(-)-buffered medium: (a) recovery from acid load in the presence of H2-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2DIDS) (Na+/H+ exchange) was stimulated similar to that found in HEPES-buffered medium; (b) recovery from acid load in the presence of amiloride and acidification due to removal of external Na+ in the presence of amiloride (HCO3- influx and efflux, respectively, by Na(+)-HCO3- cotransport) were inhibited; and (c) HCO3- influx and efflux due to Cl-/HCO3- exchange, which was measured by changing the Cl- or HCO3- gradients across the plasma membrane, were stimulated. Furthermore, the rate of Cl-/HCO3- exchange in stimulated acini was higher than the sum of H+ efflux due to Na+/H+ exchange and HCO3- influx due to Na(+)-HCO3- cotransport. Use of H2DIDS showed that the latter accounted for the attenuated changes in pHi in HCO3(-)-buffered medium, as much as treating the acini with H2DIDS resulted in similar agonist-mediated pHi changes in HEPES- and HCO3(-)-buffered media. The effect of agonists on the various acid-base transporting mechanisms is discussed in terms of their possible role in transcellular NaCl transport, cell volume regulation, and cell proliferation in pancreatic acini.  相似文献   

2.
The regulation of intracellular pH (pHi) in rat sublingual mucous acini was monitored using dual-wavelength microfluorometry of the pH-sensitive dye BCECF (2',7'-biscarboxyethyl-5(6)-carboxyfluorescein). Acini attached to coverslips and continuously superfused with HCO3(-)-containing medium (25 mM NaHCO3/5% CO2; pH 7.4) have a steady-state pHi of 7.25 +/- 0.02. Acid loading of acinar cells using the NH4+/NH3 prepulse technique resulted in a Na(+)-dependent, MIBA-inhibitable (5-(N-methyl-N-isobutyl) amiloride, Ki approximately 0.42 microM) pHi recovery, the kinetics of which were not influenced by the absence of extracellular Cl-. The rate and magnitude of the pHi recovery were dependent on the extracellular Na+ concentration, indicating that Na+/H+ exchange plays a critical role in maintaining pHi above the pH predicted for electrochemical equilibrium. When the NH4+/NH3 concentration was varied, the rate of pHi recovery was enhanced as the extent of the intracellular acidification increased, demonstrating that the activity of the Na+/H+ exchanger is regulated by the concentration of intracellular protons. Switching BCECF-loaded acini to a Cl(-)-free medium did not significantly alter resting pHi, suggesting the absence of Cl-/HCO3- exchange activity. Muscarinic stimulation resulted in a rapid and sustained cytosolic acidification (t 1/2 < 30 sec; 0.16 +/- 0.02 pH unit), the magnitude of which was amplified greater than two-fold in the presence of MIBA (0.37 +/- 0.05 pH unit) or in the absence of extracellular Na+ (0.34 +/- 0.03 pH unit). The agonist-induced intracellular acidification was blunted in HCO3(-)-free media and was inhibited by DPC (diphenylamine-2-carboxylate), an anion channel blocker. In contrast, the acidification was not influenced by removal of extracellular Cl-. The Ca2+ ionophore, ionomycin, mimicked the effects of stimulation, whereas preloading acini with BAPTA (bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid) to chelate intracellular Ca2+ blocked the agonist-induced cytoplasmic acidification. The above results indicate that during muscarinic stimulation an intracellular acidification occurs which: (i) is partially buffered by increased Na+/H+ exchange activity; (ii) is most likely mediated by HCO3- efflux via an anion channel; and (iii) requires an increase in cytosolic free [Ca2+].  相似文献   

3.
The intracellular pH (pHi) of a rat parotid acinar preparation was monitored using the pH-sensitive fluorescent dye, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Under resting (unstimulated) conditions both Na+/H+ exchange and CO2/HCO3- buffering contribute to the regulation of pHi. Muscarinic stimulation (carbachol) of the acini produced a gradual rise in pHi (approximately 0.1 unit by 10 min) possibly due to activation of the Na+/H+ exchanger. When the exchanger was blocked by amiloride or sodium removal, carbachol induced a dramatic (atropine inhibitable) decrease in pHi (approximately 0.4 pH unit with t1/2 approximately 0.5 min at 1 mM carbachol). The rate of this acidification was reduced by removal of exogenous HCO3- and by the carbonic anhydrase inhibitor methazolamide. Also, acini stimulated with carbachol in Cl- -free solutions showed a more pronounced acidification than in the corresponding Cl- -replete media. Taken together, these data indicate that the carbachol-induced acidification of rat parotid acinar cells unmasked by inhibition of the Na+/H+ exchanger is due to a rapid loss of intracellular HCO3-. Carbachol induced acidification was inhibited by the Cl- channel blocker diphenylamine 2-carboxylate but not by 4-acetomido-4'-isothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of Cl-/HCO3- exchange. In addition, this acidification could not be sustained in Ca2+-free media and was totally blocked by chelation of intracellular Ca2+. Interpreted in terms of HCO3- loss, these results closely parallel the pattern of carbachol-induced Cl- release from this same preparation and indicate that HCO3- is secreted in response to muscarinic stimulation via the same or a very similar exit pathway, presumably an apical anion channel. Under normal physiological conditions the intracellular acidification resulting from HCO3- secretion is buffered by the Na+/H+ exchanger.  相似文献   

4.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

5.
alpha-Thrombin, a potent mitogen for the hamster fibroblast cell line CCL 39, stimulates by approximately 3-fold 86Rb+ uptake in a mutant lacking the Na+/H+ antiport activity (PS 120). The major component of this stimulated 86Rb+ (K+) uptake is a bumetanide-sensitive flux (IC50 = 0.4 microM), which accounts for 50% of total K+ uptake in Go-arrested cells and is approximately 4-fold stimulated by maximal thrombin concentrations (EC50 = 5 X 10(-4) units/ml). This bumetanide-sensitive 86Rb+ uptake represents a Na+/K+/Cl- cotransport, as indicated by its dependence on extracellular Na+ and Cl- and by the existence in PS 120 cells of a bumetanide-sensitive K+-dependent 22Na+ uptake. The stimulation reaches its maximum within 2 min, is reduced at acidic intracellular pH values (half-maximal at pHi = 6.8), and can also be induced, to a lesser extent, by EGF and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the effects of which are nearly additive. In contrast, preincubation with 12-O-tetradecanoylphorbol 13-acetate results in inhibition of thrombin- and EGF-induced stimulations, suggesting that activated protein kinase C might exert a feedback inhibitory control. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport is separated from the activation of the Na+/H+ antiport. However, activation of this cotransporter does not seem to play a major role in the mitogenic signaling pathway since its complete inhibition with bumetanide reduces only by 25-30% reinitiation of DNA synthesis.  相似文献   

6.
To determine whether a K(+)-sensor mechanism exists in the hepatoportal region, periarterial hepatic afferent nerve activity responses to intraportal injection of KCl were examined in anesthetized rats. Hepatic afferent nerve activity increased in response to intraportal injection in a K(+) concentration-dependent manner, and the increase was attenuated by inhibition of the Na(+)-K(+)-2Cl(-) cotransporter by bumetanide in a dose-dependent manner. These results suggest that a bumetanide-sensitive K(+)-sensor mechanism exists in the hepatoportal region. Stimulation of this mechanism by intraportal KCl infusion elicited an immediate and powerful kaliuresis with no significant change in the plasma K(+) concentration; this was significantly greater than the kaliuresis induced by intravenous KCl infusion and was attenuated by severing the periarterial hepatic nervous plexus. These results indicate that a hepatoportal bumetanide-sensitive K(+)-sensor mechanism senses the portal venous K(+) concentration and that stimulation of this sensor mechanism causes kaliuresis, which is mainly mediated by the periarterial hepatic nervous plexus.  相似文献   

7.
Rat pancreatic acini loaded with the pH sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to characterize intracellular pH (pHi) regulatory mechanisms in these cells. The acini were attached to cover slips and continuously perfused. In 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered solutions recovery from acid load (H+ efflux) required extracellular Na+ (Na+out) and was blocked by amiloride. Likewise, H+ influx initiated by removal of Na+out was blocked by amiloride. Hence, in HEPES-buffered medium the major operative pHi regulatory mechanism is a Na+/H+ exchange. In HCO3(-)-buffered medium, amiloride only partially blocked recovery from acid load and acidification due to Na+out removal. The remaining fraction required Na+out, was inhibited by H2-4,4'-diisothiocyanostilbene-2,2'-disulfunic acid (H2DIDS) and was independent of C1-. Hence, a transporter with characteristics of a Na(+)-HCO3- cotransport exists in pancreatic acini. Measurement of pHi changes due to Na(+)-HCO3- cotransport, suggests that the transporter contributes to HCO3- efflux under physiological conditions. Changing the Cl- gradient across the plasma membrane of acini maintained in HCO3(-)-buffered solutions reveals the presence of an H2DIDS-sensitive, Na(+)-independent, Cl(-)-dependent, HCO3- transporter with characteristics of a Cl-/HCO3- exchanger. In pancreatic acini the exchanger transports HCO3- but not OH- and under physiological conditions functions to remove HCO3- from the cytosol. In summary, only the Na+/H+ exchanger is functional in HEPES-buffered medium to maintain pHi at 7.28 +/- 0.03. In the presence of 25 mM HCO3- at pHo of 7.4, all the transporters operate simultaneously to maintain a steady-state pHi of 7.13 +/- 0.04.  相似文献   

8.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

9.
Hyperosmotic stress activates Na+-K+-2Cl- cotransport (NKCC1) in secretory epithelia of the airways. NKCC1 activation was studied as uptake of 36Cl or 86Rb in human tracheal epithelial cells (HTEC). Application of hypertonic sucrose or NaCl increased bumetanide-sensitive ion uptake but did not affect Na+/H+ and Cl-/OH-(HCO3-) exchange carriers. Hyperosmolarity decreased intracellular volume (Vi) after 10 min from 7.8 to 5.4 microl/mg protein and increased intracellular Cl- (Cl-i) from 353 to 532 nmol/mg protein. Treatment with an alpha-adrenergic agent rapidly increased Cl-i and Vi in a bumetanide-sensitive manner, indicating uptake of ions by NKCC1 followed by osmotically obligated water. These results indicate that HTEC act as osmometers but lose intracellular water slowly. Hyperosmotic stress also increased the activity of PKC-delta and of the extracellular signal-regulated kinase ERK subgroup of the MAPK family. Activity of stress-activated protein kinase JNK was not affected by hyperosmolarity. PD-98059, an inhibitor of the ERK cascade, reduced ERK activity and bumetanide-sensitive 36Cl uptake. PKC inhibitors blocked activation of ERK indicating that PKC may be a downstream activator of ERK. The results indicate that hyperosmotic stress activates NKCC1 and this activation is regulated by PKC-delta and ERK.  相似文献   

10.
Two mechanisms are involved in the regulation of the intracellular pH (pHi) of aortic smooth muscle cells: the Na+/H+ antiporter and a Na+-independent HCO3-/Cl- antiporter. The Na+/H+ antiporter acts as a cell alkalinizing mechanism. It is activated by vasopressin and by phorbol esters when cells are incubated in the presence of bicarbonate but is not affected in the absence of bicarbonate. The HCO3-/Cl- antiporter acts as a cell acidifying mechanism. Agents such as forskolin, 8-Br-cAMP, and isoproterenol which raise intracellular cAMP levels inhibit the HCO3-/Cl- antiporter by shifting its pHi dependence in the alkaline direction. Thus, within the same cell type, different hormones control pHi variations by acting on different pHi regulating systems. An increase in pHi can be achieved either by a stimulation of a cell alkalinizing mechanism or by inhibition of a cell acidifying mechanism. A change of the activity of one pHi regulating mechanism modifies the responsiveness of the other to regulatory agents. Bicarbonate turns on the HCO3-/Cl- antiporter, decreases pHi and allows its regulation by protein kinase C through the Na+/H+ antiporter. Inhibition of the HCO3-/Cl- antiporter by cAMP increases the pHi and switches off the protein kinase C-mediated regulation.  相似文献   

11.
Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 parts per thousand seawater had increased gill Na(+)-K(+)-2Cl(-) cotransporter abundance, large and numerous Na(+)-K(+)-2Cl(-) cotransporter immunoreactive chloride cells on the primary filament, and reduced numbers on the secondary lamellae. Gill Na(+)-K(+)-2Cl(-) cotransporter levels were low in presmolts (February) and increased 3.3-fold in smolts (May), coincident with elevated seawater tolerance. Cotransporter levels decreased below presmolt values in postsmolts in freshwater (June). The size and number of immunoreactive chloride cells on the primary filament increased threefold during smolting and decreased in postsmolts. Gill Na(+)-K(+)-ATPase activity and Na(+)-K(+)-2Cl(-) cotransporter abundance increased in parallel during both seawater acclimation and smolting. These data indicate a direct role of the Na(+)-K(+)-2Cl(-) cotransporter in salt secretion by gill chloride cells of teleost fish.  相似文献   

12.
The intracellular ion homeostasis in cockroach salivary acinar cells during salivation is not satisfactorily understood. This is mainly due to technical problems regarding strong tissue autofluorescence and ineffective ion concentration quantification. For minimizing these problems, we describe the successful application of two-photon (2P) microscopy partly in combination with fluorescence lifetime imaging microscopy (FLIM) to record intracellular Na(+) and Cl(-) concentrations ([Na(+)](i), [Cl(-)](i)) in cockroach salivary acinar cells. Quantitative 2P-FLIM Cl(-) measurements with the dye N-(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide indicate that the resting [Cl(-)](i) is 1.6 times above the Cl(-) electrochemical equilibrium but is not influenced by pharmacological inhibition of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC) and anion exchanger using bumetanide and 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid disodium salt. In contrast, rapid Cl(-) reuptake after extracellular Cl(-) removal is almost totally NKCC mediated both in the absence and presence of dopamine. However, in physiological saline [Cl(-)](i) does not change during dopamine stimulation although dopamine stimulates fluid secretion in these glands. On the other hand, dopamine causes a decrease in the sodium-binding benzofuran isophthalate tetra-ammonium salt (SBFI) fluorescence and an increase in the Sodium Green fluorescence after 2P excitation. This opposite behavior of both dyes suggests a dopamine-induced [Na(+)](i) rise in the acinar cells, which is supported by the determined 2P-action cross sections of SBFI. The [Na(+)](i) rise is Cl(-) dependent and inhibited by bumetanide. The Ca(2+)-ionophore ionomycin also causes a bumetanide-sensitive [Na(+)](i) rise. We propose that a Ca(2+)-mediated NKCC activity in acinar peripheral cells attributable to dopamine stimulation serves for basolateral Na(+) uptake during saliva secretion and that the concomitantly transported Cl(-) is recycled back to the bath.  相似文献   

13.
14.
In mammalian cells, Na(+)-K(+)-2Cl- cotransporter activity participates in regulation of ion and volume homeostasis. This makes NKCC indispensable for normal cell growth and proliferation. We recently reported the existence of two mechanisms that can regulate NKCC activity in mature skeletal muscle. In isosmotic conditions, signaling through ERK MAPK pathway is necessary, while inhibition of the cAMP-dependent protein kinase A (PKA) pathway stimulates NKCC activity during hyperosmotic challenge. Both pathways are involved in regulating cell proliferation in wide variety of cells of epithelial and non-epithelial origin, so we tested which pathway regulated NKCC activity in cultured cells. In cultured rat skeletal muscle (L6) and intestinal epithelial (IEC-6) cells, NKCC activity in the basal state comprised 30 to 50% of total potassium influx, assessed as bumetanide-sensitive 38Rb-uptake. This NKCC activity could not be abolished by inhibitors of ERK MAPK (PD98059 and U0126), PKC (GF109203X), or PI 3-K (wortmannin, LY294002). In L6 myoblasts and in IEC-6 cells, elevation of cAMP levels with isoproterenol or forskolin led to a 60% inhibition on NKCC activity. In contrast, incubation of IEC-6 cells with the PKA-inhibitor H-89 resulted in 50% increase of NKCC activity compared with the basal level. In conclusion, it appears that in cultured cells the cAMP--PKA pathway regulates NKCC activity. This resembles hyperosmotic regulation of NKCC activity.  相似文献   

15.
In immature neurones, the steady-state intracellular Cl- concentration [Cl-](i) is generally higher than expected for passive distribution, and this is believed to be due to Na(+)-K(+)-2Cl(-) co-transport. Here, we show that N2a neuroblastoma cells, incubated in HEPES-buffered NaCl medium maintain a [Cl-](i) around 60 mm, two- to threefold higher than expected for passive distribution at a membrane potential of - 49 mV. When the cells were transferred to a Cl(-) -free medium, [Cl-](i) decreased quickly (t(1/2) < 5 min), suggesting a high Cl- permeability. When the intracellular ATP concentration was reduced to less than 1 mm by metabolic inhibitors, the initial rate of (36) Cl- uptake was strongly inhibited (60-65%) while steady-state [Cl-](i) decreased to 24 mm, close to the value predicted from the Nernst equilibrium. Moreover, after reduction of [ATP](i) and [Cl-](i) by rotenone, the subsequent addition of glucose led to a reaccumulation of Cl-, in parallel with ATP recovery. Internal bicarbonate did not affect Cl- pumping, suggesting that Cl-/HCO(3)(-) exchange does not significantly contribute to active transport. Likewise, Na(+) -K(+) -2Cl(-) co-transport also appeared to play a minor role: although mRNA for the NKCC1 form of the co-transporter was detected in N2a cells, neither the initial rate of (36)Cl- uptake nor steady-state [Cl-](i) were appreciably decreased by 10 microm bumetanide or replacement of external Na(+) by choline. These results suggest that a highly active ATP-dependent mechanism, distinct from Na(+) -K(+) -2Cl(-) co-transport, is responsible for most of the inward Cl- pumping in N2a cells.  相似文献   

16.
The effect of serum, phorbol-12-myristate-13-acetate (TPA), and forskolin on the activity Na+/H+ antiport and the Na(+)-coupled and Na(+)-independent Cl-/HCO3- antiport was studied in Vero cells by measuring 22Na+ and 36Cl- fluxes and changes in cytosolic pH (pHi). The Na(+)-independent Cl-/HCO3- antiport, which acts as an acidifying mechanism, is strongly pH-sensitive. In serum-starved cells it is activated at alkaline cytosolic pH, with a half-maximal activity at pHi approximately 7.20. Incubation with serum increased the activity of the Na(+)-independent Cl-/HCO3- antiport at pHi values from 6.8 to 7.2. Thus serum appeared to alter the pHi sensitivity of this antiporter such that the threshold value for activation of the antiport was shifted to a more acidic value. Na+/H+ antiport was somewhat stimulated initially by addition of serum, but further incubation with serum (greater than 45 min) decreased its activity. The activity of the Na(+)-coupled Cl-/HCO3- antiport, which is the major alkalinizing antiport in Vero cells, was not altered by short-term incubation with serum (less than 10 min) but decreased after prolonged incubation (greater than 45 min). Our findings with TPA and forskolin indicate that the effect of serum is partly mediated by the protein kinase C pathway, whereas the cyclic adenosine monophosphate pathway does not appear to play an important role. The net effect of serum on the pHi-regulating antiports was a slight decrease in intracellular pH.  相似文献   

17.
We previously reported that the bumetanide-sensitive Na(+)-K(+)-2Cl- cotransporter (NKCC1) is involved in the hepatic Na+ and K+ sensor mechanism. In the present study, we examined the effects of a high-NaCl or high-KCl diet on hepatic Na+ and K+ receptor sensitivity and NKCC1 expression in the liver of Sprague-Dawley rats. RT-PCR and Western blots were used to measure NKCC1 mRNA and protein expression, respectively. Infusion of hypertonic NaCl or isotonic KCl + NaCl solutions into the portal vein increased hepatic afferent nerve activity (HANA) in a Na+ or K+ dose-dependent manner. After 4 wk on a high-NaCl or high-KCl diet, HANA responses were attenuated compared with animals fed a normal diet, and NKCC1 expression was reduced. These results show that a high-NaCl or high-KCl diet decreases NKCC1 expression in the liver, and it might cause a reduction in hepatic Na(+)- and K(+)-receptor sensitivity.  相似文献   

18.
Mouse embryos at the two-cell stage, like other cells, can recover from an intracellular acid-load. Our previous work has shown, surprisingly, that there is no contribution to this recovery by Na+/H+ antiport activity. Here we show that the recovery similarly is not affected by inhibition of other known intracellular pH (pHi) regulatory mechanisms. Specifically, the recovery is unaffected by lack of external Na+, inhibition of anion exchange, or lack of bicarbonate, which eliminates the Na(+)-dependent HCO3-/Cl- exchanger as a possible mechanisms. These conditions also eliminate any possible Na+,HCO3- cotransporter operating to relieve acid-loading. Recovery is unaffected similarly by nonspecific inhibitors of H(+)-ATPase activity. These observations lead to the conclusion that recovery from acid-load is a passive process in the two-cell mouse embryo. Similarly, the mean base-line pHi (6.84) is not dependent on known pHi regulatory mechanisms. The embryos exhibit a marked intracellular alkalinization when exposed to Cl(-)-free medium in the presence of bicarbonate. This response is eliminated by an inhibitor of anion exchange and by lack of bicarbonate, but is independent of Na+. These results indicate that there is probably a Na(+)-independent HCO3-/Cl- exchanger active in these cells, presumably functioning to alleviate alkaline loads.  相似文献   

19.
Intracellular pH was measured with the pH-sensitive fluorescent probe BCECF in spinal cord neurones cultured from rat embryos. At an external pH of 7.3, the average steady-state pHi was 7.18 +/- 0.03 (SEM, n = 97) and 7.02 +/- 0.01 (n = 221) in HEPES-buffered and in bicarbonate-buffered medium, respectively. In both external media, pHi was strongly dependent on external pH (pHe). In HEPES-buffered medium, pHi recovery following an acid load induced by transient application of ammonium required external Na+ and was inhibited by amiloride, indicating the presence of a Na+/H+ exchange. Na(+)- and HCO3(-)-dependent, DIDS-sensitive alkalinizing mechanisms also contributed to pHi regulation in CO2/bicarbonate-buffered medium. The presence of an electrogenic Na(+)-HCO3- cotransporter was confirmed by the alkalinizing effect of KCl application. The fact that pHi is lower in CO2/bicarbonate- than in HEPES-buffered medium and the alkalinization observed upon suppression of external Cl- suggest that the acidifying Cl-/HCO3- transporter plays an important role in defining pHi.  相似文献   

20.
We used microelectrodes to determine whether the K/HCO3 cotransporter tentatively identified in the accompanying paper (Hogan, E. M., M. A. Cohen, and W. F. Boron. 1995. Journal of General Physiology. 106:821- 844) can mediate an increase in the intracellular pH (pHi) of squid giant axons. An 80-min period of internal dialysis increased pHi to 7.7, 8.0, or 8.3; the dialysis fluid was free of K+, Na+, and Cl-. Our standard artificial seawater (ASW), which also lacked Na+, K+, and Cl-, had a pH of 8.0. Halting dialysis unmasked a slow pHi decrease. Subsequently introducing an ASW containing 437 mM K+ and 0.5% CO2/12 mM HCO3- had two effects: (a) it caused membrane potential (Vm) to become very positive, and (b) it caused a rapid pHi decrease, because of CO2 influx, followed by a slower plateau-phase pHi increase, presumably because of inward cotransport of K+ and HCO3- ("base influx"). Only extracellular Rb+ substituted for K+ in producing the plateau-phase pHi increase in the presence of CO2/HCO3-. Mean fluxes with Na+, Li+, and Cs+ were not significantly different from zero, even though Vm shifts were comparable for all monovalent cations tested. Thus, unless K+ or Rb+ (but not Na+, Li+, or Cs+) somehow activates a conductive pathway for H+, HCO3-, or both, it is unlikely that passive transport of H+, HCO3-, or both makes the major contribution to the pHi increase in the presence of K+ (or Rb+) and CO2/HCO3-. Because exposing axons to an ASW containing 437 mM K+, but no CO2/HCO3-, produced at most a slow pHi increase, K-H exchange could not make a major contribution to base influx. Introducing an ASW containing CO2/HCO3-, but no K+ also failed to elicit base influx. Because we observed base influx when the ASW and DF were free of Na+ and Cl-, and because the disulfonic stilbene derivatives SITS and DIDS failed to block base influx, Na(+)-dependent Cl-HCO3 exchange also cannot account for the results. Rather, we suggest that the most straightforward explanation for the pHi increase we observed in the simultaneous presence of K+ and CO2/HCO3- is the coupled uptake of K+ and HCO3-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号