首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hamster (HA-1) cells that have been grown at 37 °C since explant several years ago can adapt themselves to grow at temperatures ranging from 32 to 41 °C. This growth adaptation is accompanied by major phenotypic changes in, for exampie, the cellular responses to 43 and 45 °C heat challenges and to ethanol challenges (0–10% in concentration). Cells grown at 39.5 °C are seen to acquire substantial heat resistance when compared with cells grown at 37 °C; resistance is even more pronounced if the growth temperature is at 41 °C. On the other hand, cells grown at 32 °C become more sensitive to heat than controls. Our results also indicate an increased resistance to ethanol of the 41 °C grown cells. By contrast the cells' X-ray survival response is affected only minimally. The changes seen are phenotypic; upon being returned to 37 °C, HA-1 cells within 34 h regain their ‘normal’ heat responses.  相似文献   

2.
Experiment was conducted with the aim of determining the effect of varying water temperature and ration size on growth and body composition of fry of the common carp, Cyprinus carpio. Common carp fry with an initial body weight (BW) of 0.86 g were fed a diet (34.9% protein, 18.3 KJ/g diet) at four ration sizes 4%, 5%, 6% and 7% of their body weight per day and reared at two water temperatures 28 and 32 °C for 60 days. Fry fed with 6% ration showed the highest mean final body weight at 28 °C. Final body weight was significantly (P<0.05) affected by ration and temperature. Cyprinus carpio fry raised at 28 °C had higher feed efficiency (FE) (44.36%) than the fry reared at 32 °C (40.98%) with 4% ration. Further, feed efficiency decreased with increase in ration levels in both temperatures. Protein efficiency ratio (PER) was higher (1.26) at 28 °C than at 32 °C (1.17). At 6% ration, common carp fry showed highest specific growth rate (SGR) (3.82%/day) at 28 °C as compared with at 32 °C (3.57%/day). A linear increase in protein and lipid contents was evident with increasing ration levels up to 6% body weight at both temperatures 28 and 32 °C. Second-order polynomial regression analysis of weight gain and SGR indicated the breakpoints at ration level 6.04% and 6.08% body weight per day at 28 and 32 °C. Hepatosomatic index (HSI) not affected by temperature and ration size while, viscerosomatic index (VSI) influenced (P<0.05) by ration size and temperature. Based on the above results, it may be concluded that 6% BW/day ration is optimal for growth of Cyprinus carpio fry at both the temperatures 28 and 32 °C.  相似文献   

3.
Endocrine and thermoregulatory responses were studied in male rats exposed to heat (32.5 +/- 0.1 degrees C) from acclimation temperatures of either 24.5 +/- 0.1 degrees C or 29.2 +/- 0.1 degrees C. After 1 hr in the heat, evaporative water loss and tail skin temperature changes in the 24.5 degrees C acclimated rats were greater than in the 29.2 degrees C acclimated rats; both groups displayed similar changes in metabolic rate and rectal temperature. At the respective acclimation temperatures, 29.2 degrees C rats displayed lowered plasma thyroid hormones, elevated beta-endorphin-like immunoreactivity (beta-END-LI) in the plasma, neurointermediate and anterior lobes of the pituitary gland, and no change in plasma corticosterone levels compared to 24.5 degrees C rats. After exposure to 32.5 degrees C for 1 hr, both groups of rats maintained similar plasma corticosterone levels; however, only the 24.5 degrees C group increased plasma thyroxine and beta-END-LI. These data suggest that beta-endorphin may be involved in body temperature regulation during acclimation to elevated environmental temperatures.  相似文献   

4.
Effects of hyperthermia on maturing oocytes of a random-bred stock of mice were investigated to determine if those effects might in part be responsible for the decreased reproductive efficiency observed in animals during periods of high ambient temperatures. Oocytes were collected from virgin mice following synchronization of ovulation with Pregnant Mare Serum Gonadotropin (PMSG) and Human Chorionic Gonadotropin (HCG). Stressed animals were exposed to hyperthermic conditions (35 ± 1 °C, 65 ± 3% relative humidity (RH)) immediately following the injection of HCG until the time of oocyte recovery. Prior to heat exposure all animals were maintained at control conditions of 21 ± 2 °C and 65 ± 5% RH. Meiotic maturation was disrupted in a significant proportion (>25%) of oocytes from stressed animals. Apparent disruption of the spindle mechanism resulted in the cessation of the meiotic process at metaphase I in 12.28% of the oocytes from heat-stressed mice with 4.87% oocytes exhibiting subnucalei. Other nuclear forms presumed to be non-viable occurred in an additional 8.58% of the oocytes. Two oocytes exhibited retained polar body chromatin and several oocytes at metaphase II exhibited atypical configuration. The remaining oocytes were in normal metaphase II configuration.  相似文献   

5.
To examine the impact of environmental history on the thermal sensitivity of escape response performance in juvenile giant scallops, Placopecten magellanicus, we compared animals sampled in late May, when water temperatures and day length were increasing, to animals sampled in late September, when water temperature and day length were decreasing. Habitat temperature was approximately 12 °C at both sampling times. For May scallops, performance was better at 6 than at 12 or 18 °C whereas September scallops performed better at 6 and 12 °C than at 19 °C. Regardless of environmental history, the rate of phasic contractions consistently declined at 18–19 °C, due to a decrease in the number of phasic contractions. Force measurements during escape responses of May scallops showed that phasic force production and the minimal interval between contractions changed little with temperature, whereas the minimum and mean durations of phasic contractions decreased as temperature rose. Phasic contraction rate in the first series increased with temperature. Reliance upon tonic contractions was higher in scallops tested at 18 °C than in those tested at 6 °C. Environmental history, more than habitat temperature at the time of sampling, seems to set the thermal sensitivity of phasic contraction rate in P. magellanicus. Phasic force production did not change within the thermal range tested.  相似文献   

6.
Molecular mechanisms responsible for age-dependent deterioration of biochemical functions have not been completely revealed as yet. We studied the role of ascorbic acid food supplementation in young and aged acute heat-exposed rats. The duration of heat exposure (40±0.5 °C) for heat-exposed Wistar rats, at the age of 35 days and 22–24 months, was approximately 2 h. In the aged heat-unexposed animals cholesterol and triglycerides were considerably high, whereas tissues ascorbic acid, glutathione and methylglyoxal were significantly low. Administration of vitamin C reverted these age-associated differences to the status comparable to young rats. The role of vitamin C supplementation was almost the same in young heat-exposed animals. In this direction in young rats suppression of LTC4 synthesis is evident during acute heat exposure as a result of vitamin C treatment. The importance of vitamin C treatment for young heat-exposed rats is in the protection of apoptosis, if it is determined across the LTC4 changes. In contrary, in old heat-exposed rats, vitamin C does not suppress the apoptotic processes. The results suggest that oxidative and apoptotic processes in the liver and the kidney as a result of the acute heat exposure is presumably subject of ascorbic acid deficiency.  相似文献   

7.
To test the effect of monensin on the mineral balance of growing cattle under different environmental temperatures, 24 male steers were assigned in a 2 × 2 factorial arrangement, contrasting 0 and 85 mg monensin/animal per day at 24.3 and 33.2 °C (environmental temperatures). Monensin effect was directly modulated by the environmental temperature: it increased apparent retentions of P (P=0.066), Na (P=0.005) and K (P=0.003), at the higher temperature and decreased these apparent retentions at the lower temperature, as compared with non-supplemented animals. Monensin increased fecal Ca (P=0.037), and urinary P (P=0.002), Na (P=0.003), K (P=0.014), Mg (P=0.051) and Zn (P=0.091), with higher concentrations of these minerals in animals held at 24.3 °C and lower concentrations in those at 33.2 °C, as compared with non-supplemented animals. Monensin decreased serum Mg (P=0.001) and increased serum Zn (P=0.071) in animals at 33.2 °C and increased serum Mg and decreased serum Zn at 24.3 °C. Irrespective of temperature, monensin increased both apparent absorption (P=0.058) and apparent retention (P=0.093) of P, and also urine Cu (P=0.085). Environmental temperature modulated monensin effects on mineral balance. Monensin increased apparent retention of several minerals in animals under heat stress.  相似文献   

8.
The thermal behavior of the California sea lion is modeled by a set of seventeen simultaneous partial differential equations. Numerical solution of these equations yields temperature profiles in the sea lion that closely reproduce experimental data obtained with the animals at rest in air. The model predicts that exercise is necessary to maintain body temperature while immersed in very cold water (0°C) but that very efficient heat conservation occurs during diving because of bradycardia, limited circulation, and absence of respiration.  相似文献   

9.
The physiological changes in male rats during acclimation were studied following direct or stepwise exposure to heat (32.5 degrees C) in a controlled-environment room. The animals were exposed to each temperature for 10 days beginning at 24.5 degrees C and returning to 24.5 degrees C in the reverse order of initial exposure. Relative humidity of 50 +/- 2% and a 12-h light-dark photoperiod (light from 0900 to 2100 h) were maintained. Physiological changes in metabolic rate (MR), evaporative water loss (EWL), plasma corticosterone, body water turnover, and food and water intake were measured. The results indicate a significantly (P less than 0.001) elevated plasma corticosterone and MR in rats exposed directly to heat from control temperature (24.5 degrees C) but not in those animals exposed stepwise via 29.0 degrees C. All kinetic parameters of water pool changed (P less than 0.01) on direct exposure to heat, whereas rats exposed in a stepwise manner increased only pool turnover. In addition, exposure to experimental temperatures resulted in reduced (P less than 0.05) relative food intake and increased (P less than 0.05) water intake. Compared with the control condition of 24.5 degrees C, EWL was significantly (P less than 0.05) elevated when the animals were exposed either directly or in a stepwise fashion to 32.5 degrees C. These data suggest that the response to elevated temperatures is influenced by the temperature to which the rat is acclimated.  相似文献   

10.
This study was undertaken to determine the influence of temperature (20, 37, and 50°C) and pressure (1, 100 and 200 atm) on a strain of sulphate-reducing bacteria (SRB), isolated from an oil reservoir in Alaska. The effect of different concentrations (100, 200 and 500 ppm) of biocides isothiazolone (ITZ) and formaldehyde (FA) on planktonic population of SRB was tested in order to determine the efficacy of biocides under these conditions.The highest bacterial growth rate was 0.26±0.03 h−1 at 37°C under pressure of 100 atm. Statistical evaluation showed that although both temperature and pressure had exerted an effect on bacteria by significantly increasing their growth rate; temperature rather than pressure had greater influence on bacterial proliferation.The effectiveness of both FA and ITZ in controlling planktonic populations of SRB was comparable except at 37°C/200 atm, under which conditions FA proved to be more potent. The effectiveness of both biocides decreased with an increase in cell number, as observed at 37°C/100 atm.  相似文献   

11.
The role of heat-shock in stimulating the germination of soil-stored seeds from fire-following plant species is well known. However, the effects of high pre-germination temperatures on subsequent seedling growth are less well understood. In this study, we examined the effect of pre-germination heat shock at five temperatures (60°, 75°, 90°, 105° and 120°C, each applied for 5 min) on the seedling growth of four, fire-following Fabaceae species from four Mediterranean-type ecosystems; Hippocrepis multisiliquosa (Israel), Gastrolobium villosum (Western Australia), Cyclopia pubescens (South Africa) and Lupinus succulentus (California). Following heat treatment and subsequent germination, seedlings were grown in controlled conditions before being harvested at either 10, 20- or 40 d old. A significant increase in mean dry weight biomass was found at 10 days for Hippocrepis seedlings germinated from seeds pre-heated to 90°C. However, subsequent comparison of mean dry weight biomass for seedlings of this species at 20 and 40 d old showed no significant response to heat shock pre-treatment. Similarly, an initial increase in growth of Gastrolobium seedlings germinated from seeds heated to 90° and 105°C disappeared as the plants matured. Seedling growth of Lupinus and Cyclopia was unaffected by the pre-germination heat treatment of their seeds. Since seedling competition is influenced by the size and growth rates of neighbouring plants, any changes in seedling growth rates as a consequence of the temperature environment experienced by their seeds, may therefore influence patterns of post-fire plant community recovery.  相似文献   

12.
Temperature probes were inserted into the stomachs of juvenile American alligators (Alligator mississippiensis) maintained outdoors at ambient fluctuating temperatures. Internal body temperatures (Tb) were measured every 15 min for two days, and then the alligators were injected with bacterial lipopolysaccharide (LPS), pyrogen-free saline, or left untreated. Alligators injected intraperitoneally with LPS exhibited maximum Tbs 2.6 ± 1.1 °C and 3.5 ± 1.2 °C higher than untreated control animals on days one and two after treatment, respectively. Tbs for these animals fell to within control ranges by day three postinjection. Similarly, mean preferred body temperatures (MPBTs) were significantly higher for LPS-injected alligators on days one (4.2 ± 1.8 °C) and two (3.5 ± 1.6 °C) after treatment. Intraperitoneal injection of heat-killed Aeromonas hydrophila, a gram-negative bacterium known to infect crocodilians, resulted in a fever while injection of Staphylococcus aureus (gram positive) did not elicit a febrile response. Injection of LPS in alligators maintained indoors in a constant temperature environment resulted in no increase in internal Tb. These results indicate that alligators did not exhibit a febrile response in the absence of a thermal gradient, and suggest that febrile responses observed are probably behavioral in nature.  相似文献   

13.
A temperature-sensitive mutant, ts2, of murine leukemic cells (L5178Y) loses its viability gradually at the non-permissive temperature (39 °C) but resumes normal growth when shifted to the permissive temperature (33 °C). At 39 °C the incorporation rate of thymidine is reduced on a per-cell-basis, whereas that of uridine and leucine is unchanged.Autoradiographic study indicates that the fraction of cells which can synthesize DNA decreases steadily with time of incubation at 39 °C. Accumulation of mitotic and multinucleate cells suggests that ts2 cells are defective in both mitosis and cytokinesis. Experiments using synchronized culture demonstrate that the cells shifted up atthe G2, but not at the G1 phase pass through the first mitotic phase normally.  相似文献   

14.
In vitro studies were undertaken to determine the effect of pH, temperature, water availability and carbon dioxide (CO2) concentration on germination and growth of Colletotrichum musae, the causal pathogen of anthracnose of bananas. The optimum pH for germination and growth varied between 4·0 and 5·0 depending on temperature. At low pH (< 3·0) and 15°C, both germination and growth were significantly reduced, with a marked increase in the lag time, in days, prior to growth. C. musae germinated and grew over a wide range of water activities (aw; 0·995−0·94 and 0·995−0·92, respectively) at 20, 25 and 30°C. In all cases where germination occurred appresoria were subsequently produced. Optimum growth occurred at 30°C and 0·995 aw, although this changed to 0·98 aw at 35°C. Increasing CO2 concentration to 15% or reducing oxygen concentration to 1% resulted in a significant (P < 0·05) reduction in growth, but did not inhibit growth completely.  相似文献   

15.
The physiology of the cold-shock response in Lactococcus lactis subsp. lactis IL1403 at a subzero temperature, and cold-induced adaptation to heat shock, were investigated. Preincubation of cells at 8°C led to the development of cryotolerance, i.e., an enhanced capacity to survive exposure to freezing temperature (-20°C). Pretreatment with chemicals considered to be chaotropic agents did not induce cryotolerance or, in contrast, led to a decrease in survival capacity at -20°C. Interestingly, preincubation at 8°C led also to thermololerance to a 52°C challenge, but preincubation of cells at 42°C for 30 min did not improve their capacity to survive freezing-thawing exposure. These results demonstrate that cold- and heat-shock responses are physiologically linked by a complex relation. Furthermore, food processing at low temperature before subzero or heat treatment may need to be reconsidered.  相似文献   

16.
In this study, we examined the effect of concurrent low concentrations of sodium arsenite and mild heat shock temperatures on hsp30 and hsp70 gene expression in Xenopus A6 kidney epithelial cells. RNA blot hybridization and immunoblot analysis revealed that exposure of A6 cells to 1–10 µM sodium arsenite at a mild heat shock temperature of 30 °C enhanced hsp30 and hsp70 gene expression to a much greater extent than found with either stress individually. In cells treated simultaneously with 10 µM sodium arsenite and different heat shock temperatures, enhanced accumulation of HSP30 and HSP70 protein was first detected at 26 °C with larger responses at 28 and 30 °C. HSF1 activity was involved in combined stress-induced hsp gene expression since the HSF1 activation inhibitor, KNK437, inhibited HSP30 and HSP70 accumulation. Immunocytochemical analysis revealed that HSP30 was present in a granular pattern primarily in the cytoplasm in cells treated simultaneously with both stresses. Finally, prior exposure of A6 cells to concurrent sodium arsenite (10 µM) and heat shock (30 °C) treatment conferred thermotolerance since it protected them against a subsequent thermal challenge (37 °C). Acquired thermotolerance was not observed with cells treated with the two mild stresses individually.  相似文献   

17.
In western Canada, oilseed rape (Brassica napus L. var. oleifera cv. Westar) is seeded during the early months of spring, when ambient temperatures are well below the optimum. This can result in poor seedling emergence. The objectives of the present study were to determine which developmental stages are sensitive to low temperature and whether the effects are thermal or developmental in nature. Seed was germinated at 22, 10 and 6 °C. Fresh weight changes and seedling growth were assessed on the basis of equal accumulated heat units, and the mobilization of storage reserves was assessed by employing antibodies against isocitrate lyase (ICL; EC 4.1.3.1), oleosin and cruciferin. Additionally, de novo protein synthesis was determined by quantifying the incorporation of methionine via in vivo labelling. Low temperature resulted in poor germination and early seedling growth with phase II of germination being most sensitive. At 10 °C, there was a temporal delay in germination that did not affect the overall success of germination. This was a thermal effect as seed at the lower temperatures required the equivalent of 16–24 degree days before germination occurred. Also, seedling growth at 10 °C was lower in comparison to seedlings grown at 22 °C. Seed at 6 °C displayed slow and incomplete germination and poor seedling growth as a result of both thermal and developmental effects.  相似文献   

18.
Growth experiments were carried out on the marine calcareous dinoflagellate Thoracosphaera heimii. Two strains (A603, GeoB 86) of the phototrophic, predominantly vegetative coccoid T. heimii were cultured at different temperature and nutrient levels. For the temperature experiment a gradient box was developed to allow the simultaneous testing of a wide range of temperatures on phytoplankton. During the investigations T. heimii was growing from 14 to 27°C. Exponential growth rates do not show an unimodal response curve vs. temperature: values rise with increasing temperatures toward maximal growth rates around 27°C. At low temperatures exponential growth is extremely long (over 50 days). In f/2 culture medium T. heimii (A603) is less efficient at high temperatures than at low temperatures, final yield was about five times higher at 16°C than at 27°C. Growth rate and final yield at 27°C are approximately the same for all experiments, despite different nutrient levels. Mean shell diameters show no clear relation to growth temperature. Calcification of T. heimii shells is inversely related to temperature.  相似文献   

19.
We examined the effect of acclimation to moderate hyperthermic environment on the ACTH, TSH, T3, T4 and corticosterone level, as well as the relative weight of hypophysis, thyroid and adrenal glands in streptozotocin-diabetic rats. Increased activity of the hypothalamo-pituitary-adrenocortical (HPA) axis has been demonstrated in diabetic animals, whereas insulin treatment restores the changes. Heat acclimation reduces the level of ACTH and corticosterone in control animals and moderates the hormonal disturbances caused by diabetes. Simultaneously, our study revealed impairment in the activity of the hypothalamo-pituitary-thyroid (HPT) axis. Acclimation to 35±1 °C resulted in significantly lower T3 and T4 levels in control, diabetic and insulin-treated animals. Relative weight of the hypophysis, thyroid and adrenal glands is decreased in heat-acclimated rats. Our assumption is that there might be a cross tolerance between diabetes and heat acclimation on a hormonal level.  相似文献   

20.
The present study reports on effects of different light:dark periods, light intensities, N:P ratios and temperature on the specific growth rate of flagellated cells of Phaeocystis pouchetii in culture. The specific growth rate was estimated by diel changes in cellular DNA content. The cellular DNA content and cell cycle of flagellated cells of P. pouchetii are shown, and the importance of light:dark period in cell division is demonstrated. Diel patterns of the cellular DNA content showed that cell division was confined to the dark period. The cells dealt with more than one division per day by rapid divisions shortly after each other.The specific growth rates (μDNA) based on the DNA cell cycle model were in close agreement with specific growth rates (μCell) determined from cell counts. The temperature affected the specific growth rates (multiple regression, p < 0.01) and were higher at 5 °C (μ ≤ 2.2 d−1) than at 10 °C (μ ≤1.6 d−1). Increasing the light:dark period from 12:12 h to 20:4 h affected the specific growth rate of P. pouchetii at the lower temperature tested (5 °C) (multiple regression, p < 0.01), resulting in higher specific growth rates than at 10 °C. At 10 °C, the effect of light:dark period was severely reduced. Neither light nor nutrients could compensate the reduction in specific growth rates caused by elevated temperature. The specific growth rates was not affected by the N:P ratios tested (multiple regression, p = 0.21). The experiments strongly suggest that the flagellated cells have a great growth potential and could play a dominating role in northern areas at increased day length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号