首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new system for the perfusion culture of animal cells in suspension is described. It consists of an airlift loop reactor and a settling tank for cell retention. Insufficient nutrient and oxygen supply of the cells in the settling tank was prevented by cooling the cell suspension before entering the settler. As a result, the catabolic activity of the cells in the settler was reversibly reduced. Furthermore, the density gradient induced by cooling caused a liquid motion through the settler. Thus, it was not necessary to pump medium containing shear, sensitive cells. With this simple system, it was possible to prduce 2 to 5 g of antibodies in a 5.4-L reactor in continuous runs of 400 to 600 h. The productivity was increased by a factor of 17 and the cell density was 4 times higher in comparison with the corresponding batch system. The cell retention system was found to have the property of separating viable and nonviable cells. With the increasing perfusion rate, dead cells and debris were preferably washed out. For perfusion rates up to 1.3 d(-1), the retention efficiency of the settler was nearly 100% for viable cells; hence, this system may show advantages at the industrial scale.  相似文献   

2.
Selective recycle has successfully been used to maintain an unstable plasmid-bearing bacterial strain as dominant in a continuous reactor, whereas the culture reverts to 100% segregant cells when selective recycle is not used. The plasmid-bearing strain is slower growing and flocculent; however, when the cells lose their plasmid, the resulting segregant cells are nonflocculent and grow at a faster rate due to their decreased metabolic burden. Both types of cells exit a chemostat and enter an inclined settler where the flocculent plasmid-bearing cells are separated from the nonflocculent segregant cells by differential sedimentation. The underflow from the cell separator, which is enriched with plasmid-bearing cells, is recycled back to the chemostat, while the segregant cells are withdrawn off the top of the settler and discarded. The experimental results agree well with selective recycle reactor theory. On the basis of the theory, a criterion is presented that has been shown to successfully predict whether or not a selective recycle reactor can maintain a plasmid-bearing strain.  相似文献   

3.
Analysis of mammalian viable cell biomass based on cellular ATP   总被引:1,自引:0,他引:1  
Analysis of cellular ATP as a means of measuring viable biomass loading was investigated in hybridoma cell culture. ATP analysis by the luciferin-luciferase assay was compared with trypan blue-stained hemocytometer counts. The cell-specific ATP content varied between 2 and 6 fmol per viable cell over a batch culture. ATP levels were highest during exponential growth, and decreased during the stationary and decline phases. Electronic counting and volume measurements were performed to assay the viable cell biomass. Cell sorting, using fluorescein diacetate, was used to separate viable and nonviable cells in cultures with between 35% and 90% viable cells. Viable cells contained over 2 orders of magnitude greater cell-specific ATP than nonviable cells. Cell-specific ATP correlated directly with the viable cell volume rather than viable cell numbers. Over the range of batch culture conditions, ATP analysis should provide a more accurate measurement of hybridoma viable biomass than hemocytometer counts.  相似文献   

4.
Accurate cell settling velocity determination is critical for perfusion culture using a gravity settler for cell retention. We have developed a simple apparatus (a "settling column") for measuring settling velocity and have validated the procedure with 15-μm polystyrene particles with known physical properties. The measured settling velocity of the polystyrene particles is within 4% of the value obtained using the traditional Stokes' law approach. The settling velocities of three hybridoma cell lines were measured, resulting in up to twofold variation among cell lines, and the values decreased as the cell culture aged. The settling velocities of the nonviable cells were 33-50% less than the corresponding viable cells. The significant variation of settling velocities among cell populations and growth phases confirms the necessity of routine measurement of this property during long-term perfusion culture.  相似文献   

5.
Continuous fermentations were carried out involving competition between two strains of Saccharomyces cerevisiae. One of the strains has a lower specific growth rate and is very flocculent, whereas the fastergrowing strain is nonflocculent. The product stream from the chemostat was fed into an inclined settler where the flocculent strain was partially separated from the nonflocculent strain as a result of the higher sedimentation rate of the flocculent cells. The underflow from the inclined settler, which was concentrated and enriched with flocculent cells, was recycled to the chemostat. When no recycle was used, the fastergrowing, nonflocculent yeast rapidly overtook the culture. With selective recycle, however, the experiments demonstrated that the slower-growing flocculent yeast could be maintained as the dominant species. A theoretical development is also presented in order to describe the competition between two strains in the bioreactor-settler system. The concept of selective recycle via selective flocculation and sedimentation offers a possible means of maintaining unstable recombinant microorganisms in continuous fermentations.  相似文献   

6.
Measurements of volume distributions and dry weight are made on hybridoma cells in culture. The volume of viable hybridoma cells is significantly larger than that of nonviable cells. During exponential growth, the volume of the viable hybridoma cells is found to be significantly larger than that during other stages of batch culture. Proportionality is found between the volume of the cells and their dry weight, indicating that the volume data can be used in conjunction with cell concentration data as a practical technique for indirect measurement of the biomass concentration present in a culture. Comparison of dry weight concentrations in continuous culture to predictions from the volume data shows very good agreement.  相似文献   

7.
The inclined multiplate (lamella) gravity settler has proven to be an effective cell retention device in industrial perfusion cell culture applications. Investigations on the effects of geometric design and operational variables of the cell settler are crucial to understanding how to best improve the settler performance. Maximizing the harvest/perfusion flow rate while minimizing viable cell loss out of the harvest is the primary challenge for optimization of the settler design. This study demonstrated that computational fluid dynamics (CFD) can be utilized to accurately model and evaluate the settler separation performance for near-monodisperse suspensions and therefore aid in the design optimization of the settler under these baseline conditions. With the preferred geometric features that were identified from CFD modeling results, we proposed design guidelines for the scale-up of these multiplate settler systems. With these guidelines and performance verification using the CFD model, a new large-scale settler was designed and fabricated for a perfusion cell culture process using a minimally aggregating production cell line. Perfusion cell culture runs with this particular cell line were performed with this settler, and the CFD model was able to predict the initial ramp-up performance, proving it to be a valuable scale-up design tool for this production process.  相似文献   

8.
Acoustic cell retention devices have provided a practical alternative for up to 50 L/day perfusion cultures but further scale-up has been limited. A novel temperature-controlled and larger-scale acoustic separator was evaluated at up to 400 L/day for a 10(7) CHO cell/mL perfusion culture using a 100-L bioreactor that produced up to 34 g/day recombinant protein. The increased active volume of this scaled-up separator was divided into four parallel compartments for improved fluid dynamics. Operational settings of the acoustic separator were optimized and the limits of robust operations explored. The performance was not influenced over wide ranges of duty cycle stop and run times. The maximum performance of 96% separation efficiency at 200 L/day was obtained by setting the separator temperature to 35.1 degrees C, the recirculation rate to three times the harvest rate, and the power to 90 W. While there was no detectable effect on culture viability, viable cells were selectively retained, especially at 50 L/day, where there was a 5-fold higher nonviable washout efficiency. Overall, the new temperature-controlled and scaled-up separator design performed reliably in a way similar to smaller-scale acoustic separators. These results provide strong support for the feasibility of much greater scale-up of acoustic separations.  相似文献   

9.
Cultures of the CRL-1606 hybridoma (ATCC) have been reported to undergo continuous proliferation with simultaneous death during nutrient limited fed-batch fermentations. The bcl-2 proto-oncogene has been shown to prevent cell death under a variety of otherwise death inducing conditions. We were interested in elucidating the nature of the massive death observed in cultures of CRL-1606, specifically with respect to the possible environmental causes, and the ability of overexpressed human bcl-2 (hbcl-2) to mitigate cell death. Abortive proliferation, or continuous proliferation in the presence of continuous death, could be induced in serum free cultures of CRL-1606 through the withdrawal of insulin provided the culture was competent for cell proliferation. Culture competency for proliferation was found to be solely determined by the presence of cell culture nutrients. Abortive proliferation was defective in cultures transfected with hbcl-2 and the enhanced viability observed resulted from an increased viable cell population and at the expense of the nonviable cell population normally found in untransfected cultures. Abortive proliferation was also observed in serum containing cultures upon serum shiftdowns. Like the insulin-supplemented serum free culture system, hbcl-2 transfected cultures exhibited defects in the abortive proliferation process. These results suggest that the massive death observed during nutrient-limited fed-batch fermentation originate, in part, from growth or survival factor limitations. Hence, approaches to design cell culture media that account for the cell's proliferation requirements without accounting for the cell's survival requirements may represent a cell death sentence. Given the transformed nature of the hybridomas, we conclude that the abortive proliferation of CRL-1606 is a consequence of inappropriate cell cycle entry in a survival factor limited environment.  相似文献   

10.
A model is proposed that accounts for the decreases in yield which occur in chemostat cultures of mesophilic yeasts at superoptimal growth temperatures. Two yield depressing effects were identified, one due to increased maintenance requirements by the viable fraction of the population, the other due to energy substrate dissipation by the nonviable fraction. The two effects are functions of the dilution rate, as is the fraction of nonviable cells. Experimental results were obtained on the yield, maintenance, and dissipation of energy substrate in a glucose-limited chemostat culture of a respiration-deficient mutant of Saccharomyces cerevisiae at 39°C. The rates of glucose utilization for maintenance and for dissipation constituted, respectively, 33–28% and 15–9% of the total glucose utilization rate over the range of dilution rates tested (0.038–0.064 hr?1), while the yield varied over this range from 0.066–0.085 g of biomass (dry wt) per gram of glucose.  相似文献   

11.
A novel perfusion system was developed for high density culture of animal cells. The system consists of an airlift bioreactor, a setting tank and a flat settler. Both the settling tank and flat settler have two connecting pipes for transporting the cells from and back to the reactor, respectively. Thus, the cell flow in the settlers can be controlled in uni-direction, avoiding the countercurrent flow of the cells. During perfusion cultures, the cells firstly settled in the settling tank, then, unsettled cells in the tank were transferred to the flat settler for re-settling. With the application of the system to hybridoma cell cultures, it was found that the maximum viable cell density, monoclonal antibody concentration and average productivity were 1.31 x 107 cells ml-1, 400 mg l-1 and 461 mg l-1 d-1, respectively, which were much higher than those of a batch culture. Both theoretical analysis and experimental results showed a much higher separation efficiency in such a two-step sedimentation system than that in a conventional one-step sedimentation system. In addition, the volumetric ratio of the sedimentation devices to the culture volume in our developed system is much lower, which may be potentially useful on an industrial-scale.  相似文献   

12.
Rapamycin was used as a medium additive to slow the progression of CRL 1606 hybridomas through the cell cycle, under the hypothesis that such a modulation might reduce cell death. Cell cycle distributions for CRL hybridomas in the G1 phase of the cell cycle ranged from 20% to 35% during batch, fed-batch, and continuous culture experiments, independent of culture time, dilution rate, growth rates, or death rates. Rapamycin, an mTOR signaling inhibitor, immunosuppressant, and G1-phase arresting agent, was identified and tested for efficacy in restraining cell cycle progression in CRL 1606 hybridoma cultures. However, in the presence of 100 nM rapamycin, the percentage of cells in the G1 phase of the cell cycle during fed-batch cultures was only increased from 28% to 31% in control cultures to 37% to 48% for those with rapamycin. Accordingly, rapamycin only slightly reduced culture growth rate. Instead, the use of rapamycin more notably kept viability higher than that of control cultures by delaying cell death for 48 h, thereby enabling viable proliferation to higher maximum viable cell densities. Furthermore, rapamycin enhanced specific monoclonal antibody production by up to 100% during high-viability growth. Thus, over the course of 6-day fed-batch cultivations, the beneficial effects of rapamycin on viable cell density and specific productivity resulted in an increase in final monoclonal antibody titer from 0.25 to 0.56 g/L (124%). As rapamycin is reported to influence a much broader range of cellular functions than cell cycle alone, these findings are more illustrative of the influence that signal transduction pathways related to mTOR can have on overall cell physiology and culture productivity.  相似文献   

13.
The influence of centrifugal force on the growth of cells was examined by exposing the cells of the mouse-human hybridoma X87 line to centrifugal force (100–500 G) for ten minutes twice a day and comparing the static culture with that of unexposed cells. In this experiment, both cell proliferation and specific antibody productivity were independent of the centrifugal effect, and gave the same results as in the case of no exposure to centrifugal force. High density cultivation of the mouse-human hybridoma X87 line was obtained by a perfusion system where the cells were separated from the culture medium by continuous centrifugation. In the serum-free culture, the maximum viable cell density exceeded 107 cells/ml, and monoclonal antibody was stably produced for 37 days. The results in this culture were equivalent to those obtained by intermittent centrifugal cell separation from the culture medium, and separation by gravitational settlement.  相似文献   

14.
In the present study, cell death was investigated in cultures of NS/0 myelomas and SP2/0-derived D5 hybridomas through morphological examination of cells stained with acridine orange and ethidium bromide. The relative contribution of elevated levels of lactic acid and ammonia, as well as deprivation of glutamine, cystine, and glucose on the induction of necrosis or apoptosis, was investigated. In batch culture of D5 hybridoma cells, induction of apoptotic cell death correlated with the exhaustion of glutamine, while in the case of NS/0 myelomas, it coincided with exhaustion of cystine. To determine whether limiting nutrients were the actual triggering factors for apoptosis in batch culture, exponentially growing cells were resuspended in glutamine or cystine-free media. Within 30 to 40 h, viability decreased to 50% and the nonviable cell population displayed typical apoptotic morphology, with crescents of condensed chromatin around the periphery of the nucleus, or with the entire nucleus present as one or a group of featureless, brightly staining spherical beads. Similarly, D5 hybridomas and NS/0 myelomas cultivated in glucose-free medium died mainly from apoptosis. Cells were also cultivated in fresh medium supplemented with elevated concentrations of ammonia (3.0 mM) and/or lactate (35 mM, 50 mM). This resulted in decreased viabilities and necrotic death in both cell lines. From these results, we conclude that D5 hybridomas and NS/0 myelomas deprived of essential nutrients die by apoptosis, whereas incubation in the presence of elevated levels of metabolic byproducts such as ammonia and lactate will induce necrotic cell death in these cells. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Selective separation of cells using dielectrophoresis (DEP) has recently been studied and methods have been proposed. However, these methods are not applicable to large‐scale separation because they cannot be performed efficiently. In DEP separation, the DEP force is effective only when it is applied close to the electrodes. Utilizing a DEP filter is a solution for large‐scale separation. In this article, the separation efficiency for viable and nonviable cells in a DEP filter was examined. The effects of an applied AC electric field frequency and the gradient of the squared electric field intensity on a DEP velocity for the viable and nonviable animal cells (3‐2H3 cell) were discussed. The frequency response of the DEP velocity differed between the viable and the nonviable cells. We deducted an empirical equation that can be used as guiding principle for the DEP separation. The results indicate that the viable and the nonviable cells were separated using the DEP filter, and the best operating conditions such as the applied voltage and the flow rate were discussed. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
We have developed several approaches to create cell lines with improved characteristics in cell culture. In some cases it has been possible to isolate natural variants with useful properties. Cholesterol independent variants of the mouse NSO myeloma cell line were isolated by cloning in a selective medium. A glutamine independent variant of a hyridoma was isolated by continuous (chemostat) culture under glutamine limited conditions in the presence of glutamate. Choline independent cells were isolated from a choline limited chemostat. In an alternative approach to modifying cell behaviour, we have used recombinant DNA techniques to introduce the glutamine synthetase (GS) gene to a hybridoma. This resulted in glutamine independence and increased productivity.  相似文献   

17.
Two hybridoma systems, mouse·human-human (m·h-h) heterohybridoma and human-human (h-h) hybridoma, have been established, and hybridomas secreting anti-tetanus toxoid and anti-HBsAg human monoclonal antibodies (MoAbs), both having a neutralizing activity have been obtained. Cell-line improvement was shown to be an efficient method for improving the productivity in a cell culture process. Two kinds of serum-free media, GFS (a serum substitute)-containing media and polyethylene glycol (PEG)-containing media, have been established to produce human MoAbs. m·h-h Heterohybridomas could be cultivated for a long period by perfusion culture in an agitation vessel, but h-h hybridomas could not. We found that h-h hybridomas show growth-associated antibody production kinetics and established two kinds of long-term cultivation systems: continuous perfusion culture and semicontinuous immobilized perfusion culture. We also scaled up batch culture and short-term perfusion culture to 200-L and 50-L fermentors, respectively. Processes for large-scale purification from the culture supernatants of both GFS- and PEG-containing serum-free media have also been developed.  相似文献   

18.
A perfusion system is described for the production of a human monoclonal antibody in non-secreting murine myeloma (NS0) cells that was previously shown to be difficult to produce at high levels using fed-batch culture. The perfusion system was based on the use of a commercially available cell settler as the separation device to separate the cells from the culture. Separation efficiency of the cell settler was above 98%. Based on the growth and glucose consumption rates, fresh media was added to the culture and the turnover rate for the bioreactor was set at a maximum of 1.5 times the bioreactor volume per day. The perfusion process resulted in twice the maximum viable cell densities and up to three times the total protein production in a 53-day run period when compared to the fed-batch process. In addition, charge heterogeneity of the antibody as measured by ion exchange chromatography was lower for material purified from the perfusion runs compared to fed-batch. Perfusion mode of culture using a commercially available gravity settler is therefore a viable alternative to fed-batch mode for high-level production of this monoclonal antibody in NS0 cells.  相似文献   

19.
Dielectrophoresis is a well established and effective means for the manipulation of viable cells. However, its effectiveness greatly depends upon the utilization of very low electrical conductivity media. High conductivity media, as in the case of cell culture media, result only in the induction of weaker repulsive forces (negative dielectrophoresis) and excessive medium heating. A dielectrophoresis-based cell separation device (DEP-filter) has been recently developed for perfusion cultures that successfully overcomes these obstacles and provides a very high degree of viable cell separation while most of the nonviable cells are removed from the bioreactor by the effluent stream. The latter results in high viabilities throughout the culture period and minimization of lysed cell proteases in the bioreactor. However, an important question that remains to be answered is whether we have any adverse effects by exposing the cultured cells to high frequency electric fields for extended periods of time. A special chamber was constructed to quantitate the effect under several operational conditions. Cell growth, glucose uptake, lactate and monoclonal antibody production data suggest that there is no appreciable effect and hence, operation over long periods of time of the DEP-filter should not have any adverse effect on the cultured cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Cost-effective production of biopharmaceuticals on a large scale can be carried out by perfusion cultures of mammalian cells. One problem with this mode of operation for submerged free-cell cultures is the requirement for an efficient cell separation device located in the effluent stream. The present work investigates the potential for the development of a novel dielectrophoresis-based cell separator, capable of providing selective retention of viable cells in cell culture media, which are highly conductive. Predictions of the dielectrophoretic (DEP) response in culture media were first obtained through a series of DEP-levitation experiments. Subsequently, a prototype microelectrode "filter" was microfabricated and tested with C174 myeloma cell suspensions of density 1 x 10(6) cells/mL. The optimum frequency range for selective retention of viable cells was found in the range 5-15 MHz. A maximum separation efficiency of 98% was achieved at 10 MHz, with an applied peak-to-peak voltage of 30 V (maximum field strength of 10(5) V/m) and a flow rate of 30 mL/h which corresponds to a superficial velocity of 5.23 cm/h through the DEP-filter channels. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 239-250, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号