首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental factors may drive tick ecology and therefore tick-borne pathogen (TBP) epidemiology, which determines the risk to animals and humans of becoming infected by TBPs. For this reason, the aim of this study was to analyze the influence of environmental factors on the abundance of immature-stage Ixodes ricinus ticks and on the prevalence of two zoonotic I. ricinus-borne pathogens in natural foci of endemicity. I. ricinus abundance was measured at nine sites in the northern Iberian Peninsula by dragging the vegetation with a cotton flannelette, and ungulate abundance was measured by means of dung counts. In addition to ungulate abundance, data on variables related to spatial location, climate, and soil were gathered from the study sites. I. ricinus adults, nymphs, and larvae were collected from the vegetation, and a representative subsample of I. ricinus nymphs from each study site was analyzed by PCR for the detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum DNA. Mean prevalences of these pathogens were 4.0% ± 1.8% and 20.5% ± 3.7%, respectively. Statistical analyses confirmed the influence of spatial factors, climate, and ungulate abundance on I. ricinus larva abundance, while nymph abundance was related only to climate. Interestingly, cattle abundance rather than deer abundance was the main driver of B. burgdorferi sensu lato and A. phagocytophilum prevalence in I. ricinus nymphs in the study sites, where both domestic and wild ungulates coexist. The increasing abundance of cattle seems to increase the risk of other hosts becoming infected by A. phagocytophilum, while reducing the risk of being infected by B. burgdorferi sensu lato. Controlling ticks in cattle in areas where they coexist with wild ungulates would be more effective for TBP control than reducing ungulate abundance.  相似文献   

2.
The abandonment of traditional livestock farming systems in Mediterranean countries is triggering a large-scale habitat transformation, which, in general, consists of the replacement of open grazing areas by woodlands through non-managed regeneration. As a consequence, wild ungulates are occupying rapidly the empty niche left by domestic ungulates. Both types of ungulates represent the main trophic resource for large vertebrate scavengers. However, a comparison of how vertebrate scavengers consume ungulate carcasses in different habitats with different ungulate species composition is lacking. This knowledge is essential to forecast the possible consequences of the current farmland abandonment on scavenger species. Here, we compared the scavenging patterns of 24 wild and 24 domestic ungulate carcasses in a mountainous region of southern Spain monitored through camera trapping. Our results show that carcasses of domestic ungulates, which concentrate in large numbers in open pasturelands, were detected and consumed earlier than those of wild ungulate carcasses, which frequently occur in much lower densities at more heterogenous habitats such as shrublands and forest. Richness and abundance of scavengers were also higher at domestic ungulate carcasses in open habitats. Vultures, mainly griffons (Gyps fulvus), consumed most of the carcasses, although mammalian facultative scavengers, mainly wild boar (Sus scrofa) and red fox (Vulpes vulpes), also contributed importantly to the consumption of wild ungulate carcasses in areas with higher vegetation cover. Our findings evidence that the abandonment of traditional grazing may entail consequences for the scavenger community, which should be considered by ecologists and wildlife managers.  相似文献   

3.
Non-invasive collection of tissue samples to obtain DNA for microsatellite genotyping required to estimate population size has been used for many wildlife species but rarely for ungulates. We estimated mountain goat (Oreamnos americanus) population size on a mountain complex in southwestern British Columbia by identification of individuals using DNA obtained from fecal pellet and hair samples collected during 3 sampling sessions. We identified 55 individuals from 170 samples that were successfully genotyped, and estimated a population of 77 mountain goats (SE = 7.4). Mean capture probability was 0.38 (SE = 0.037) per session. Our technique provides one of the first statistically rigorous estimates of abundance of an ungulate species using DNA derived primarily from fecal pellets. Our technique enables managers to obtain minimum counts or population estimates of ungulates in areas of low sightability that can be used for conservation and management. © 2011 The Wildlife Society.  相似文献   

4.
Abundance estimates are used to establish baselines, set recovery targets, and assess management actions, all of which are essential aspects of evidence-based natural resource management. For many rare butterflies, these estimates do not exist, and conservation decisions rely instead on expert opinion. Using Bartram’s scrub-hairstreak (Strymon acis bartrami, US Endangered) as a case study, we present a novel comparison of two methods that permit the incorporation of detection probabilities into abundance estimates, distance sampling and double-observer surveys. Additionally we provide a framework for establishing a systematic sampling scheme for monitoring very rare butterflies. We surveyed butterflies monthly in 2013, increasing intensity to weekly when butterflies were detected. We conducted 19 complete, island-wide surveys on Big Pine Key in the Florida Keys, detecting a total of 59 Bartram’s scrub-hairstreaks across all surveys. Peak daily abundances were similar as estimated with distance sampling, 156 butterflies (95 % CI 65–247), and double-observer, 169 butterflies (95 % CI 65–269). Selecting a method for estimating abundance of rare species involves evaluating trade-offs between methods. Distance sampling requires at least 40 detections, but only one observer, while double-observer requires only 10 detections, but two observers. Double-observer abundance estimates agreed with distance sampling estimates, which suggests that double-observer is a reasonable alternative method to use for estimating detection probability and abundance for rare species that cannot be surveyed with other, more commonly used methods.  相似文献   

5.
Roadside point counts are often used to estimate trends of bird populations. The use of aural counts of birds without adjustment for detection probability, however, can lead to incorrect population trend estimates. We compared precision of estimates of density and detectability of whistling northern bobwhites (Colinus virginianus) using distance sampling, independent double-observer, and removal methods from roadside surveys. Two observers independently recorded each whistling bird heard, distance from the observer, and time of first detection at 362 call-count stops in Ohio. We examined models that included covariates for year and observer effects for each method and distance from observer effects for the double-observer and removal methods using Akaike's Information Criterion (AIC). The best model of detectability from distance sampling included observer and year effects. The best models from the removal and double-observer techniques included observer and distance effects. All 3 methods provided precise estimates of detection probability (CV = 2.4–4.4%) with a range of detectability of 0.44–0.95 for a 6-min survey. Density estimates from double-observer surveys had the lowest coefficient of variation (2005 = 3.2%, 2006 = 1.7%), but the removal method also provided precise estimates of density (2005 CV = 3.4%, 2006 CV = 4.8%), and density estimates from distance sampling were less precise (2005 CV = 9.6%, 2006 CV = 7.9%). Assumptions of distance sampling were violated in our study because probability of detecting bobwhites near the observer was <1 or the roadside survey points were not randomly distributed with respect to the birds. Distances also were not consistently recorded by individual members of observer pairs. Although double-observer surveys provided more precise estimates, we recommend using the removal method to estimate detectability and abundance of bobwhites. The removal method provided precise estimates of density and detection probability and requires half the personnel time as double-observer surveys. Furthermore, the likelihood of meeting model assumptions is higher for the removal survey than with independent double-observers. © 2011 The Wildlife Society.  相似文献   

6.
黑龙江省完达山东部林区东北虎猎物生物量   总被引:3,自引:2,他引:1  
研究一个地区猎物种群生物量能否满足捕食动物种群数量的需求,这对于了解濒危大型食肉动物是否受到来自于食物缺乏的威胁和制定相应的保护措施极其重要。为了掌握黑龙江省完达山东部林区东北虎食物需求与猎物生物量之间的关系,于2008年冬季至2009早春积雪覆盖期采用随机布设样线,通过收集有蹄类动物在雪地上留下的足迹等活动的方法,在东方红林业局和迎春林业局管辖境内3 692.06 km2的区域布设大样方48个,并在大样方里共布设样线240条开展有蹄类动物种群数量调查,确定东北虎猎物生物量。调查结果表明:研究地区野猪(成体502 606只,亚成体209 210只)、马鹿(成体331 357只,亚成体67 72只)和狍子(成体810 815只,亚成体202 203只)的生物量分别为74 767.50 87 825.00 kg、79 744.50 85 984.50 kg 和 31 337.00 31 525.50 kg,3种有蹄类动物生物量共计1 85 849.00 205 335.00 kg。研究地区猎物总生物量为209 619.89 231 598.24 kg。如果按8%的生物提供给东北虎,3种主要猎物生物量可满足5.22 6.92只东北虎个体的食物需求,研究地区猎物总生物量则可满足5.89 7.81只东北虎个体的食物需求。此外,对足迹遇见率与抽样强度、抽样强度与足迹遇见率的均值标准误差之间关系的分析表明,在完达山东部林区布设120条样线(抽样距离600 km)、150条样线(抽样距离750 km)和115条样线(抽样距离675 km)能满足野猪、马鹿、狍子种群数量调查准确性的最低需求。  相似文献   

7.
We investigated wolf feeding habits in relation to the abundance of wild and domestic ungulates to test the hypothesis that large prey are preferred and that their abundance affects the use of other food categories and diet breadth. We determined diet composition by scat analysis from December 1987 to December 1992. The research was carried out in three study areas located in northern Italy and characterised by marked differences in wild and domestic ungulate abundance. In study area A (low wild and domestic ungulate availability) fruits, livestock, other vertebrates and wild ungulates made up the bulk of the diet (71% in volume). In area B (high availability of livestock) wolf diet was mainly based on sheep and wild boars (80% in volume). In study area C (high availability of wild ungulates) wild ungulates were the main food of wolves (90% in volume). Significant differences were found among study areas in the mean percentage volume of all food categories and in particular for wild ungulates, livestock, other vertebrates and fruits (p < 0.0001 in all cases). Diet breadth decreased in areas with high availability of large wild and domestic herbivores. The use of livestock species was lower where there was high abundance, richness and diversity of the wild ungulate guild. Selection for wild ungulate species was partially affected by their abundance: however other factors as prey social behaviour, adaptability to the habitat (for introduced species), and body size could have an important role in species selection by wolves. In particular in area C wild boars were selected for, roe and red deers avoided, and fallow deers and mouflons used as available. Livestock species were used in relation to their abundance and accessibility, in particular sheep were selected for and cattle avoided; but if calves bom in the pastures were considered as the only available cattle, they were selected for and sheep were used as available. Large and in particular wild herbivores were found to be of great importance for the wolf population maintenance in northern Italy, one of the most important recovery areas of Mediterranean wolves.  相似文献   

8.
Conservation investment, particularly for charismatic and wide-ranging large mammal species, needs to be evidence-based. Despite the prevalence of this theme within the literature, examples of robust data being generated to guide conservation policy and funding decisions are rare. We present the first published case-study of tiger conservation in Indochina, from a site where an evidence-based approach has been implemented for this iconic predator and its prey. Despite the persistence of extensive areas of habitat, Indochina''s tiger and ungulate prey populations are widely supposed to have precipitously declined in recent decades. The Seima Protection Forest (SPF), and broader Eastern Plains Landscape, was identified in 2000 as representing Cambodia''s best hope for tiger recovery; reflected in its designation as a Global Priority Tiger Conservation Landscape. Since 2005 distance sampling, camera-trapping and detection-dog surveys have been employed to assess the recovery potential of ungulate and tiger populations in SPF. Our results show that while conservation efforts have ensured that small but regionally significant populations of larger ungulates persist, and density trends in smaller ungulates are stable, overall ungulate populations remain well below theoretical carrying capacity. Extensive field surveys failed to yield any evidence of tiger, and we contend that there is no longer a resident population within the SPF. This local extirpation is believed to be primarily attributable to two decades of intensive hunting; but importantly, prey densities are also currently below the level necessary to support a viable tiger population. Based on these results and similar findings from neighbouring sites, Eastern Cambodia does not currently constitute a Tiger Source Site nor meet the criteria of a Global Priority Tiger Landscape. However, SPF retains global importance for many other elements of biodiversity. It retains high regional importance for ungulate populations and potentially in the future for Indochinese tigers, given adequate prey and protection.  相似文献   

9.
Protected area managers need reliable information to detect spatial and temporal trends of the species they intend to protect. This information is crucial for population monitoring, understanding ecological processes, and evaluating the effectiveness of management and conservation policies. In under-funded protected areas, managers often prioritize ungulates and carnivores for monitoring given their socio-economic value and sensitivity to human disturbance. Aircraft-based surveys are typically utilized for monitoring ungulates because they can cover large areas regardless of the terrain, but such work is expensive and subject to bias. Recently, unmanned aerial vehicles have shown great promise for ungulate monitoring, but these technologies are not yet widely available and are subject to many of the same analytical challenges associated with traditional aircraft-based surveys. Here, we explore use of inexpensive and robust distance sampling methods in Kafue National Park (KNP) (22,400 km2), carried out by government-employed game scouts. Ground-based surveys spanning 101, 5-km transects resulted in 369 ungulate group detections from 20 species. Using generalized linear models and distance sampling, we determined the environmental and anthropogenic variables influencing ungulate species richness, density, and distribution. Species richness was positively associated with permanent water and percent cover of closed woodland vegetation. Distance to permanent water had the strongest overall effect on ungulate densities, but the magnitude and direction of this effect varied by species. This ground-based approach provided a more cost-effective, unbiased, and repeatable method than aerial surveys in KNP, and could be widely implemented by local personnel across under-funded protected areas in Africa.  相似文献   

10.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

11.
青藏高原是地球上一个独特的自然地理单元, 具有丰富的生境类型和生物种类, 是生物多样性与全球环境变化领域的热点研究区域。青藏高原发育着独特的动物区系, 尤其是有蹄类动物, 如藏羚(Pantholops hodgsonii)、野牦牛(Bos mutus)、藏原羚(Procapra picticaudata)、普氏原羚(P. przewalskii)、白唇鹿(Przewalskium albirostris)等青藏高原特有动物。在本文中, 我们探讨了如下问题: 青藏高原有多少种有蹄类动物?有多少种特有有蹄类动物?其分布格局如何?生存状况如何?保护现状如何?我们首先确定了青藏高原动物地理区的地理边界。发现青藏高原有28种有蹄类, 其中10种是青藏高原特有种。青藏高原有蹄类种数占中国有蹄类的42%, 单位面积上的有蹄类物种密度比中国现生有蹄类物种平均密度高62%。特有种比例高达36%。然而, 青藏高原有蹄类物种分布不均匀, 其丰富度呈东部高西部低格局, 而高原特有有蹄类则分布于高原腹地。青藏高原有蹄类动物生存受威胁比例高, 其中71%为受威胁物种, 54%被列入濒危野生动植物种国际贸易公约(CITES)附录I或附录II。野外调查发现大额牛(Bos frontalis)已经野外灭绝, 目前仅在高黎贡山有人工养殖的群体。青藏高原有蹄类物种红色名录指数从1998-2015年呈现持续下降趋势, 全球气候变化将加剧这一趋势。青藏高原有蹄类受威胁局面仍在继续, 物种生存状况持续恶化。虽然经过40年的自然保护区建设, 但一些青藏高原有蹄类的重要种群与栖息地并没有被自然保护区和新建的三江源国家公园所覆盖。因此, 在开发青藏高原、实现人类社会经济发展目标的同时, 应尽量保存高原野生动物种群与生境, 实现青藏高原草地生态系统的可持续利用与生物多样性保护的双赢目标。  相似文献   

12.
Habitat fragmentation contributes to the decline of plant species by decreasing gene flow among populations. Restoring connectivity among habitat patches is therefore a major issue for plant conservation. However, deciding where to focus restoration efforts requires identifying suitable dispersers for each target plant species. We collected data from the literature on wild and domesticated ungulates, known to be effective seed dispersers, and on the plants they dispersed in Europe via epi‐ and/or endozoochory. We performed a systematic literature review to identify plant and animal traits relevant for seed dispersal. We first modeled the relationships between epi‐ or endozoochory and a priori selected plant traits (diaspore releasing height, length, shape and morphology, and habitat openness). The differences we underlined between the two dispersal mechanisms justified splitting our analyses accordingly. Then, for each dispersal mechanism, we asked whether basic plant traits could be used to predict specific traits of ungulates as endozoochorous or epizoochorous seed dispersers. We modeled the relationships between a priori selected ungulate traits for epizoochory (habitat openness, shoulder height, hair curliness, and hair length) and for endozoochory (habitat openness, body mass, feeding type and digestive system) and plant traits. Plant habitat openness and diaspore morphology were the predictors that most often explained differences among ungulates for epizoochory, whereas plant habitat openness and diaspore releasing height most often explained differences for endozoochory. Our trait‐based predictive models can help improve our ability to propose more precise management decisions for the conservation of plant populations worldwide by taking into account ungulate dispersers.  相似文献   

13.
The monitoring of population trends of wild ungulates is important to evaluate their population dynamics and to develop sound conservation/management plans. The wild boar Sus scrofa can impose heavy impacts on ecosytems and human activities, as well as be responsible for disease transmission. Estimating abundance of wild boars is a challenging issue, because of some peculiar biological and ecological traits of this ungulate. Indices of relative abundance could be used to evaluate its population trends. In a Mediterranean area we used faeces counts, through a two-stage stratified sampling, to estimate relative densities of wild boars, between 2007 and 2014. Faeces density estimates increased not significantly between 2007 (151.5 faeces/100 ha) and 2010 (203.8 faeces/100 ha) and decreased significantly from 2010 to 2014 (95.5 faeces/100 ha). The decrease in faeces density estimates was consistent with the increased harvest effort (number of harvest days), performed from 2010 to 2013 to limit impact on ecosystems and reduce damages to crops. The variation of faeces density estimates was also consistent with that of harvest indices (total harvest to harvest effort), with significantly positive values of Pearson and rank correlation coefficients. Results suggest that faeces density estimates achieved with the adopted sampling strategies can be effectively used as indices of relative abundance.  相似文献   

14.
Ungulate abundance has increased dramatically worldwide, having strong impacts on ecosystem functioning. High ungulate densities can reduce the abundance, diversity and/or body condition of small mammals, which has been attributed to reductions in cover shelter and food availability by ungulates. The densities of wild ungulates have increased recently in high-diversity Mediterranean oak ecosystems, where acorn-dispersing small rodents are keystone species. We analysed experimentally ungulate effects on seed-dispersing rodents in two types of oak woodland: a forest with dense shrub layer and in dehesas lacking shrubs. Ungulates had no significant effects on vegetation structure or rodent body mass, but they reduced dramatically rodent abundance in the lacking-shrub dehesas. In the forest, ungulates modified the spatial distribution and space use of rodents, which were more concentrated under shrubs in the presence than in the absence of ungulates. Our results point to the importance of shrubs in mediating ungulate–rodent interactions in Mediterranean areas, suggesting that shrubs serve as shelter for rodents against ungulate physical disturbances such as soil compaction, trampling or rooting. Holm oak seedling density was reduced by ungulates in dehesa plots, but not in forests. Acorn consumption by ungulates may reduce oak recruitment to a great extent. Additionally, we suggest that ungulates may have a negative effect on oak regeneration processes by reducing the abundance of acorn-dispersing rodents. Given that shrubs seem to mediate ungulate effects on acorn dispersers, controlled shrub encroachment could be an effective alternative to ungulate population control or ungulate exclusion for the sustainability of the high-diversity Mediterranean oak ecosystems.  相似文献   

15.
With their striking predilection for perching on African ungulates and eating their ticks, yellow-billed (Buphagus africanus) and red-billed oxpeckers (B. erythrorhynchus) represent one of the few potentially mutualistic relationships among vertebrates. The nature of the oxpecker-ungulate relationship remains uncertain, however, because oxpeckers are known to consume ungulate tissues, suggesting that the relationship between oxpeckers and ungulates may also be parasitic. To examine this issue further, we obtained data on oxpecker preferences for different ungulate species, the abundance of ticks on these ungulates, and ungulate hide thickness. In support of the mutualism hypothesis, we found that both species of oxpeckers prefer ungulate hosts that harbor a higher abundance of ticks. We found no evidence that hide thickness-a measure of the potential for parasitism by oxpeckers-predicts oxpecker preferences for different ungulate species. Oxpeckers also prefer larger-bodied ungulates, possibly because larger animals have more ticks, provide a more stable platform upon which to forage, or support more oxpeckers feeding simultaneously. However, the preference for ungulates with greater tick abundance was independent of host body mass. These results support the hypothesis that the relationship between oxpeckers and ungulates is primarily mutualistic.  相似文献   

16.
由于资源分布与环境变量的不同,形成多样的生物多样性分布格局,山地生态系统具有较高的生境异质性和丰富的生物多样性,是研究生物多样性分布的理想选择。为掌握岷山北部有蹄类多样性、分布特征及其影响因素,我们基于四川白河国家级自然保护区及边缘区域的160台红外相机监测数据(2017—2020年),将研究区域按固定间隔划分为5个海拔段,分别计算各海拔段和8种植被类型内有蹄类物种的相对多度指数(RAI)和物种丰富度,整理并初步分析了该区域有蹄类多样性和空间分布。结果显示:(1)该区域共记录到6种有蹄类,毛冠鹿(Elaphodus cephalophus)是优势种,相对多度指数最高(RAI=41.12);其次是中华斑羚(Naemorhedus griseus)(RAI=14.10)和野猪(Sus scrofa)(RAI=6.76),林麝(Moschus berezovskii)(RAI=0.59)和扭角羚(Budorcas taxicolor)(RAI=0.34)最罕见;(2)云杉林和冷杉林中有蹄类物种丰富度均最高(6种),有蹄类相对多度指数则在常绿杜鹃灌丛中最高(RAI=96.86),柏木林内的物种丰富度(2种)和相对多度指数(RAI=19.66)均最低;(3)根据相机监测点的海拔,分为低海拔(< 2 500 m)、中海拔(2 500~2 900 m)和高海拔(> 2 900 m)3组,6种有蹄类可以大致分成3类,即高海拔类群(林麝和扭角羚)、中低海拔类群(毛冠鹿和中华鬣羚)和全海拔类群(中华斑羚和野猪);(4)物种多样性和丰富度在中海拔段均最高,整体呈现近似钟形的分布格局。植被以及植被与海拔的交互效应是影响白河国家级自然保护区有蹄类物种多样性空间分布的主要因素。我们建议:保护区在管理实践中应减少中低海拔段干扰,控制林线以上区域放牧;未来的监测或调查应增加极高海拔区域(3 300 m以上)的抽样强度。  相似文献   

17.
18.
Ecological theory predicts the strongest ecosystem effects of herbivory when dominant and ecologically important species are consumed. Bilberry, Vaccinium myrtillus, is such a key plant species, attractive to many other species in the boreal forests, for example ungulate and invertebrate herbivores. Large herbivores may remove substantial biomass and alter plant quality and therefore affect abundance and populations of invertebrate animals sharing the same food plant. We combined experimental exclusion of ungulates with a browsing intensity gradient to investigate the 15-year effect of ungulate (Cervus elaphus and Ovis aries) browsing on bilberry plant size and on bilberry-feeding herbivorous larvae (Lepidoptera and Symphyta), in a Norwegian old growth boreal forest ecosystem. Bilberry ramets in exclosure plots had nearly nine times higher dry mass and three times higher abundance of invertebrates feeding on them than in ungulate-access plots. Sweep-netting data verified these findings as larval numbers were twice as high in exclosure plots. The pattern in the large herbivore effects on bilberry size and abundance of herbivorous larvae were identical along the browsing gradient. Differences in larval abundance between treatments, as indicated by leaf-chewing, increased during the 15-year study period, and the community fluctuations were larger when ungulate herbivores were excluded. The browsing effect was moderated by plant quality as larval densities were lowest on both heavily-browsed and non-browsed plants, and highest on ramets that had 50–74% of annual shoots browsed. Our study supports previous findings in that bilberry is relatively disturbance tolerant and may recover quickly, but that ungulates may compete with herbivorous larvae for food biomass. Additionally, our results strongly indicates that population insect community peaks and fluctuations are dampened by ungulate consumption. Our findings add to the understanding on how ungulates may structure forest ecosystems directly and indirectly.  相似文献   

19.
Occupancy has several important advantages over abundance methods and may be the best choice for monitoring sparse populations. Here we use simulations to evaluate competing designs (number of sites vs. number of surveys) for occupancy monitoring, with emphasis on sparse populations of the endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov). Because conservation planning is usually abundance-based, we also ask whether detection/non-detection data may reliably convert to abundance, hypothesizing that occupancy provides a more dependable shortcut when populations are sparse. Count-index and distance sampling were conducted across 50 habitat patches containing variably sparse Karner blue populations. We used occupancy-detection model estimates as simulation inputs to evaluate primary replication tradeoffs, and used peak counts and population densities to evaluate the occupancy-abundance relationship. Detection probability and therefore optimal design of occupancy monitoring was strongly temperature dependent. Assuming a quality threshold of 0.075 root-mean square error for the occupancy estimator, the minimum allowable effort was 360 (40 sites?×?9 surveys) for spring generation and 200 (20 sites?×?10 surveys) for summer generation. A mixture model abundance estimator for repeated detection/non-detection data was biased low for high-density and low-density populations, suggesting that occupancy may not provide a reliable shortcut in abundance-based conservation planning for sparse butterfly populations.  相似文献   

20.
Estimating the abundance and density of mountain ungulates is difficult because of rugged and remote terrain, high elevations, and rapidly changing weather. Helicopter surveys could overcome these problems, but researchers have seldom applied helicopter-based survey methods at large spatial scales in mountain terrain. We used helicopters to count introduced Himalayan tahr (Hemitragus jemlahicus) at 117 plots, each of 4 km2, in New Zealand's Southern Alps during 2016–2019. The sampling frame was 7,844 km2 and we located the plots at the vertices of an 8-km grid superimposed over the sampling frame (i.e., a systematic random sampling design). We conducted 3 repeat counts at each plot during summer–autumn. We used the repeat counts to estimate tahr abundance and density, corrected for imperfect detection, using a dynamic N-mixture model for open populations. We estimated the population of tahr in the sampling frame using design-based, finite sampling methods and model-based inference procedures. The mean estimated density of tahr on each plot varied from zero to 31.7 tahr/km2. The mean densities of tahr varied among management units, ranging from 0.3 to 10.7 tahr/km2, and exceeded specified intervention densities in 6 of the 7 management units. The total design-based estimate of tahr abundance in the sampling frame was 34,500 (95% CI = 27,750–42,900), with a coefficient of variation (CV) of 0.11. The corresponding model-based estimate of total abundance was similar (34,550, 95% CI = 30,250–38,700) but was substantially more precise (CV = 0.06) than the design-based estimate. The precision of the estimates for the individual management units was also better than that of the design-based estimates, with CVs of <0.20 for all but 1 management unit. Our study provides a repeatable method for sampling mountain ungulates. More generally, robust estimation of abundance and density of mountain ungulates is possible by combining aerial surveys and open population models with an objective, probabilistic sampling design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号