首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hair cell regeneration in the avian auditory epithelium   总被引:2,自引:0,他引:2  
Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.  相似文献   

2.
In mammals, auditory hair cells are generated only during embryonic development and loss or damage to hair cells is permanent. However, in non-mammalian vertebrate species, such as birds, neighboring glia-like supporting cells regenerate auditory hair cells by both mitotic and non-mitotic mechanisms. Based on work in intact cochlear tissue, it is thought that Notch signaling might restrict supporting cell plasticity in the mammalian cochlea. However, it is unresolved how Notch signaling functions in the hair cell-damaged cochlea and the molecular and cellular changes induced in supporting cells in response to hair cell trauma are poorly understood. Here we show that gentamicin-induced hair cell loss in early postnatal mouse cochlear tissue induces rapid morphological changes in supporting cells, which facilitate the sealing of gaps left by dying hair cells. Moreover, we provide evidence that Notch signaling is active in the hair cell damaged cochlea and identify Hes1, Hey1, Hey2, HeyL, and Sox2 as targets and potential Notch effectors of this hair cell-independent mechanism of Notch signaling. Using Cre/loxP based labeling system we demonstrate that inhibition of Notch signaling with a γ- secretase inhibitor (GSI) results in the trans-differentiation of supporting cells into hair cell-like cells. Moreover, we show that these hair cell-like cells, generated by supporting cells have molecular, cellular, and basic electrophysiological properties similar to immature hair cells rather than supporting cells. Lastly, we show that the vast majority of these newly generated hair cell-like cells express the outer hair cell specific motor protein prestin.  相似文献   

3.
Strict control of cellular proliferation is required to shape the complex structures of the developing embryo. The organ of Corti, the auditory neuroepithelium of the inner ear in mammals, consists of two types of terminally differentiated mechanosensory hair cells and at least four types of supporting cells arrayed precisely along the length of the spiral cochlea. In mice, the progenitors of greater than 80% of both hair cells and supporting cells undergo their terminal division between embryonic day 13 (E13) and E14. As in humans, these cells persist in a non-proliferative state throughout the adult life of the animal. Here we report that the correct timing of cell cycle withdrawal in the developing organ of Corti requires p27(Kip1), a cyclin-dependent kinase inhibitor that functions as an inhibitor of cell cycle progression. p27(Kip1) expression is induced in the primordial organ of Corti between E12 and E14, correlating with the cessation of cell division of the progenitors of the hair cells and supporting cells. In wild-type animals, p27(Kip1) expression is downregulated during subsequent hair cell differentiation, but it persists at high levels in differentiated supporting cells of the mature organ of Corti. In mice with a targeted deletion of the p27(Kip1) gene, proliferation of the sensory cell progenitors continues after E14, leading to the appearance of supernumerary hair cells and supporting cells. In the absence of p27(Kip1), mitotically active cells are still observed in the organ of Corti of postnatal day 6 animals, suggesting that the persistence of p27(Kip1) expression in mature supporting cells may contribute to the maintenance of quiescence in this tissue and, possibly, to its inability to regenerate. Homozygous mutant mice are severely hearing impaired. Thus, p27(Kip1) provides a link between developmental control of cell proliferation and the morphological development of the inner ear.  相似文献   

4.
5.
6.
Cell cycle inhibitors play important roles in the development of mammalian cochleae. Loss of function of those factors in mice at various developmental stages results in distinct phenotypes characterized by overproduction or loss of cochlear sensory cells. Our recent study showed that acute deletion of the retinoblastoma protein (Rb) induces rapid cell cycle reentry and subsequent loss of postnatal cochlear hair cells in mice. Clearly, these regulators play multiple roles in cell cycle exit and differentiation of hair cell and supporting cell progenitors. They are also crucial in maintenance of postmitotic states and survival of differentiated hair cells and supporting cells. In mammals, lost hair cells cannot be spontaneously replaced, leading to permanent deafness. However, lower vertebrates such as birds and fish can naturally regenerate damaged hair cells from the underlying supporting cells through proliferation and transdifferentiation. Thus, manipulating cell cycle inhibitors in mammalian cochleae could provide a new avenue to restore hearing in deaf people caused by a variety of genetic mutations and environmental insults.  相似文献   

7.
Notch signaling inhibits hair cell differentiation, based on studies on mice deficient in Notch signaling-related genes and its downstream genes. However, the precise mechanisms of this inhibition are unknown because it is difficult to control the timing and duration of the suppression of Notch signaling. Here, we developed a novel in vitro culture and analysis method for mouse fetal cochleae and examined the roles of Notch signaling by its reversible inhibition through the use of Notch signaling inhibitors of gamma-secretase and TNF-alpha-converting enzyme. Notch inhibition with Notch signaling inhibitor treatment increases the number of cochlear hair cells, as observed in gene deletion experiments. We elucidated that this increase is regulated by the dichotomy between hair cells and supporting cells from common progenitors. We also propose other roles of Notch signaling in cochlear development. First, Notch signaling arrests the cell cycle of the cochlear epithelium containing putative hair cells and supporting cell progenitors because Notch inhibition with inhibitor treatment increases the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells that can differentiate into hair cells or supporting cells. Second, Notch signaling is required for the induction of Prox1-positive supporting cells. Third, Notch signaling is required for the maintenance of supporting cells.  相似文献   

8.

Background

Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients.

Methodology/Principal Findings

Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells.

Conclusions/Significance

These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells.  相似文献   

9.
10.
Several studies suggest fibroblast growth factor receptor 3 (FGFR3) plays a role in the development of the auditory epithelium in mammals. We undertook a study of FGFR3 in the developing and mature chicken inner ear and during regeneration of this epithelium to determine whether FGFR3 shows a similar pattern of expression in birds. FGFR3 mRNA is highly expressed in most support cells in the mature chick basilar papilla but not in vestibular organs of the chick. The gene is expressed early in the development of the basilar papilla. Gentamicin treatment sufficient to destroy hair cells in the basilar papilla causes a rapid, transient downregulation of FGFR3 mRNA in the region of damage. In the initial stages of hair cell regeneration, the support cells that reenter the mitotic cycle in the basilar papilla do not express detectable levels of FGFR3 mRNA. However, once the hair cells have regenerated in this region, the levels of FGFR3 mRNA and protein expression rapidly return to approximate those in the undamaged epithelium. These results indicate that FGFR3 expression changes after drug-induced hair cell damage to the basilar papilla in an opposite way to that found in the mammalian cochlea and may be involved in regulating the proliferation of support cells.  相似文献   

11.
The regeneration of hair cells in the chick inner ear following acoustic trauma was examined using transmission electron microscopy. In addition, the localization of proliferation cell nuclear antigen (PCNA) and basic fibroblast growth factor (b-FGF) was demonstrated immunohistochemically. The auditory sensory epithelium of the normal chick consists of short and tall hair cells and supporting cells. Immediately after noise exposure to a 1500-Hz pure tone at a sound pressure level of 120 decibels for 48 h, all the short hair cells disappeared in the middle region of the auditory epithelium. Twelve hours to 1 day after exposure, mitotic cells, binucleate cells and PCNA-positive supporting cells were observed, and b-FGF immunoreactivity was shown in the supporting cells and glial cells near the habenula perforata. Spindle-shaped hair cells with immature stereocilia and a kinocilium appeared 3 days after exposure; these cells had synaptic connections with the newly developed nerve endings. The spindle-shaped hair cell is considered to be a transitional cell in the lineage of the supporting cell to the mature short hair cell. These results indicate that, after acoustic trauma, the supporting cells divide and differentiate into new short hair cells via spindle-shaped hair cells. Furthermore, it is suggested that b-FGF is related to the proliferation of the supporting cells and the extension of the nerve fibers.  相似文献   

12.
Summary Mammals and birds have independently developed different populations of sensory cells grouped across the width of their auditory papillae. Although in mammals there is clear evidence for disparate functions for the two hair-cell populations, the different anatomical pattern in birds has made comparisons difficult. In two species of birds, we have used single-fibre staining techniques to trace physiologically-characterized primary auditory nerve fibres to their peripheral synapses. As in mammals, acoustically-active afferent fibres of these birds innervate exclusively the neurally-lying group of hair cells in a 11 relationship, suggesting important parallels in the functional organization of the auditory papillae in these two vertebrate classes. In addition, we found a strong trend of the threshold to acoustic stimuli at the characteristic frequency across the width of the avian papilla.Abbreviations IHC inner hair cell(s) - OHC outer hair cell(s) - SHC short hair cell(s) - THC tall hair cell(s)  相似文献   

13.
Hearing loss and balance disturbances are often caused by death of mechanosensory hair cells, which are the receptor cells of the inner ear. Since there is no cell line that satisfactorily represents mammalian hair cells, research on hair cells relies on primary organ cultures. The best-characterized in vitro model system of mature mammalian hair cells utilizes organ cultures of utricles from adult mice (Figure 1) 1-6. The utricle is a vestibular organ, and the hair cells of the utricle are similar in both structure and function to the hair cells in the auditory organ, the organ of Corti. The adult mouse utricle preparation represents a mature sensory epithelium for studies of the molecular signals that regulate the survival, homeostasis, and death of these cells.Mammalian cochlear hair cells are terminally differentiated and are not regenerated when they are lost. In non-mammalian vertebrates, auditory or vestibular hair cell death is followed by robust regeneration which restores hearing and balance functions 7, 8. Hair cell regeneration is mediated by glia-like supporting cells, which contact the basolateral surfaces of hair cells in the sensory epithelium 9, 10. Supporting cells are also important mediators of hair cell survival and death 11. We have recently developed a technique for infection of supporting cells in cultured utricles using adenovirus. Using adenovirus type 5 (dE1/E3) to deliver a transgene containing GFP under the control of the CMV promoter, we find that adenovirus specifically and efficiently infects supporting cells. Supporting cell infection efficiency is approximately 25-50%, and hair cells are not infected (Figure 2). Importantly, we find that adenoviral infection of supporting cells does not result in toxicity to hair cells or supporting cells, as cell counts in Ad-GFP infected utricles are equivalent to those in non-infected utricles (Figure 3). Thus adenovirus-mediated gene expression in supporting cells of cultured utricles provides a powerful tool to study the roles of supporting cells as mediators of hair cell survival, death, and regeneration.  相似文献   

14.
The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future.  相似文献   

15.
16.
When inner ear hair cells die, humans and other mammals experience permanent hearing and balance deficits, but non-mammalian vertebrates quickly recover these senses after epithelial supporting cells give rise to replacement hair cells. A postnatal decline in cellular plasticity appears to limit regeneration in mammalian balance organs, where declining proliferation responses are correlated with decreased spreading of supporting cells on artificial and native substrates. By culturing balance epithelia on substrates that differed in flexibility, we assessed spreading effects independent of age, showing a strong correlation between shape change and supporting cell proliferation. Then we made excision wounds in utricles cultured from young and old chickens and mice and compared quantified levels of spreading and proliferation. In utricles from young mice, and both young and old chickens, wounds re-epithelialized in <24 hours, while those in utricles from mature mice took three times longer. More cells changed shape in the fastest healing wounds, which accounted for some differences in the levels of proliferation, but inter-species and age-related differences in shape-sensitive restriction points, i.e., the cellular thresholds for shape changes that promote S-phase, were evident and may be particularly influential in the responses to hair cell losses in vivo.  相似文献   

17.
The Notch signaling pathway is an essential cell-cell interaction mechanism, which regulates processes such as cell proliferation, cell fate decisions, differentiation or stem cell maintenance. Pigmentation in mammals is provided by melanocytes, which are derived from the neural crest, and by the retinal pigment epithelium (RPE), which is part of the optic cup and hence orginates from neuroectoderm. The importance of functional Notch signaling in melanocytes has been unveiled recently. Here, the pathway is essential for the maintenance of proper hair pigmentation. Deletion of Notch1 and Notch2 or RBP-Jkappa in the melanocyte lineage resulted in a gene dosage-dependent precocious hair graying, due to the elimination of melanoblasts and melanocyte stem cells. Expression data support the idea that Notch signaling might equally be involved in development of the RPE. Furthermore, recent analyses indicate a possible role of Notch signaling in the development of melanoma. In this review, we address the essential role of Notch signaling in the regeneration of the melanocyte population during hair follicle cycles, and discuss data supporting the implication of this signaling pathway in RPE development and melanoma.  相似文献   

18.
Rabbani P  Takeo M  Chou W  Myung P  Bosenberg M  Chin L  Taketo MM  Ito M 《Cell》2011,145(6):941-955
Melanocyte stem cells (McSCs) intimately interact with epithelial stem cells (EpSCs) in the hair follicle bulge and secondary hair germ (sHG). Together, they undergo activation and differentiation to regenerate pigmented hair. However, the mechanisms behind this coordinated stem cell behavior have not been elucidated. Here, we identified Wnt signaling as a key pathway that couples the behavior of the two stem cells. EpSCs and McSCs coordinately activate Wnt signaling at the onset of hair follicle regeneration within the sHG. Using genetic mouse models that specifically target either EpSCs or McSCs, we show that Wnt activation in McSCs drives their differentiation into pigment-producing melanocytes, while EpSC Wnt signaling not only dictates hair follicle formation but also regulates McSC proliferation during hair regeneration. Our data define a role for Wnt signaling in the regulation of McSCs and also illustrate a mechanism for regeneration of complex organs through collaboration between heterotypic stem cell populations.  相似文献   

19.
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.  相似文献   

20.
FGFR1 is required for the development of the auditory sensory epithelium   总被引:12,自引:0,他引:12  
The mammalian auditory sensory epithelium, the organ of Corti, comprises the hair cells and supporting cells that are pivotal for hearing function. The origin and development of their precursors are poorly understood. Here we show that loss-of-function mutations in mouse fibroblast growth factor receptor 1 (Fgfr1) cause a dose-dependent disruption of the organ of Corti. Full inactivation of Fgfr1 in the inner ear epithelium by Foxg1-Cre-mediated deletion leads to an 85% reduction in the number of auditory hair cells. The primary cause appears to be reduced precursor cell proliferation in the early cochlear duct. Thus, during development, FGFR1 is required for the generation of the precursor pool, which gives rise to the auditory sensory epithelium. Our data also suggest that FGFR1 might have a distinct later role in intercellular signaling within the differentiating auditory sensory epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号