首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The closely related salamander genera Plethodon and Aneides (Plethodontidae) differ in morphology, behavior, and ecology. Although the systematics of these taxa has been the focus of much study, many details remain unresolved. To generate an hypothesis for the relationships among these taxa, I sequenced a segment of the mitochondrial protein-coding gene ND4 and portions of mitochondrial tRNAs. Taxa sampled were 5 species of Aneides, 7 species of western Plethodon, and 13 species of eastern Plethodon. Ensatina eschscholtzii was used as the outgroup. Phylogenetic analyses using maximum-parsimony, neighbor-joining, and maximum-likelihood consistently recovered some relationships. The eastern species of Plethodon are a robust, well-supported clade. Sister taxon relationships of P. elongatus and P. stormi, of P. dunni and P. vehiculum, and of A. hardii and the three west coast species of Aneides were also consistently resolved with good support. The monophyly of Aneides was only weakly supported in some analyses and there is no evidence for the monophyly of Plethodon or of the western species of Plethodon. Excluding the relatively distant outgroup, down-weighting saturated substitutions, and analyzing conserved data partitions did not yield additional resolution or support among the lineages of western Plethodon and Aneides. These results are consistent either with saturation of sequences, due to the age of the lineages, or with relatively rapid radiation. An old, rapid radiation is consistent with the results of previous studies. An analysis of current taxonomy within the phylogenetic framework presented here retains Aneides and recognizes Plethodon as a metataxon (indicated with an asterisk, Plethodon*).  相似文献   

2.
The bootstrapping method of determining confidence in the topology of phylogenetic trees has been applied to electrophoretic protein data for two groups of amphibians: salamanders of two North American genera (Aneides and Plethodon) of the tribe Plethodontini and Holarctic hylid frogs. Some current methods of phylogenetic reconstruction for electrophoretic protein data have been evaluated by comparing the trees obtained from molecular data sets with available morphological data. Molecular data on the phylogenetic relationships of Aneides and Plethodon, data obtained from electrophoretic and immunological studies, indicate that Aneides probably was derived from western Plethodon subsequent to the separation of eastern and western Plethodon. Thus Plethodon very likely is a paraphyletic genus. The extremely low rate of morphological evolution in Plethodon compared with that in Aneides causes difficulty in indicating their evolutionary relationships taxonomically because there are no synapomorphic morphological characters that define either eastern or western Plethodon, whereas there are several for the genus Aneides. Thus molecular data alone probably indicate the evolutionary relationships of the species in these genera. Highton and Larson's (1979) arrangement of species of Plethodon into eight species groups is supported. The topologies of the unweighted pair-group method using arithmetic means (UPGMA) and distance Wagner trees were compared with independent morphological and molecular data on the relationships of the 28 plethodonine species. It was found that UPGMA trees indicate relationships that are more in agreement with other information than are those provided by distance Wagner trees. The use of the bootstrap technique indicates that the topologies of UPGMA trees are better supported statistically than are the topologies of distance Wagner trees. Moreover, different addition criteria produce a variety of distance Wagner trees with different topologies, each with several groupings that are not supported statistically. It is concluded that considerable caution should be used in interpreting the topology of distance Wagner trees. Very similar results were obtained with a second data set on 30 taxa of Holarctic hylid frogs. Trees obtained by the neighbor-joining method are more in agreement with UPGMA phenograms and other data, so this method of phylogenetic reconstruction may be useful to systematists not willing to assume constant rates of evolution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Recent speciation research has generally focused on how lineages that originate in allopatry evolve intrinsic reproductive isolation, or how ecological divergence promotes nonallopatric speciation. However, the ecological basis of allopatric isolation, which underlies the most common geographic mode of speciation, remains poorly understood and largely unstudied. Here, we explore the ecological and evolutionary factors that promote speciation in Desmognathus and Plethodon salamanders from temperate eastern North America. Based on published molecular phylogenetic estimates and the degree of geographic range overlap among extant species, we find strong evidence for a role for geographic isolation in speciation. We then examine the relationship between climatic variation and speciation in 16 sister-taxon pairs using geographic information system maps of climatic variables, new methods for modeling species' potential geographic distributions, and data on geographic patterns of genetic variation. In contrast to recent studies in tropical montane regions, we found no evidence for parapatric speciation along climatic gradients. Instead, many montane sister taxa in the Appalachian Highlands inhabit similar climatic niches and seemingly are allopatric because they are unable to tolerate the climatic conditions in the intervening lowlands. This temporal and spatial-ecological pattern suggests that niche conservatism, rather than niche divergence, plays the primary role in promoting allopatric speciation and montane endemism in this species-rich group of vertebrates. Our results demonstrate that even the relatively subtle climatic differences between montane and lowland habitats in eastern North America may play a key role in the origin of new species.  相似文献   

4.
The history of life has been marked by several spectacular radiations, in which many lineages arise over a short period of time. A possible consequence of such rapid splitting in the recent past is that the intrinsic barriers that prevent gene flow between many species may have too little time to develop fully, leading to extensive hybridization among recently evolved lineages. The salamander genus Plethodon in eastern North America has been proposed as a possible example of this scenario, but without explicit statistical tests. In this paper, we present a nearly comprehensive phylogeny for the 45 extant species of eastern Plethodon, based on DNA sequences of mitochondrial (two genes, 1335 base pairs) and nuclear genes (two genes, up to 3481 base pairs). We then use this phylogeny to examine rates and patterns of diversification and hybridization. We find significantly rapid diversification within the glutinosus species group. Examining patterns of natural hybridization in light of the phylogeny shows considerable hybridization within this clade, including introgression between species that are morphologically distinct and distantly related. Reproductive isolation increases over time and may be very weak among the most recently diverged species. These results suggest that the origin of species and the evolution of intrinsic reproductive isolating mechanisms, rather than being synonymous, may be decoupled in some cases (i.e., rapid origin of lineages outstrips the "speciation clock"). In contrast to the conclusions of a recent review of adaptive radiation and hybridization, we suggest that extensive hybridization sometimes may be a consequence, rather than a cause, of rapid diversification.  相似文献   

5.
Members of the genus Limnodynastes are a prominent and widespread feature of the Australian frog fauna. Yet despite their potential to be informative about biogeographic history and mechanisms of speciation, the relationships among these taxa are not well known. We investigated phylogenetic relationships within the genus Limnodynastes via sequencing of mitochondrial (mt)DNA from current members of the genus Limnodynastes and the monotypic genus Megistolotis. a 450-bp fragment of the 16S rRNA gene and a 370-bp fragment of the protein-coding gene ND4 were used to infer a molecular phylogeny. We revise traditional species groupings and now recognize four species groups within Limnodynastes: the L. ornatus group (L. ornatus and L. spenceri), the L. peronii group (L. peronii, L. tasmaniensis, L. fletcheri, the L. depressus), the L. salmini group (L. salmini, L. convexiusculus, and L. lignarius), and the L. dorsalis group (L. dorsalis, L. terraereginae, L. dumerilii and L. interioris). The L. ornatus species group forms a highly distinctive clade that is a sister group to the other Limnodynastes groups. Pending broader phylogenetic studies it could be removed from the genus Limnodynastes. Our results concur with previous suggestions that Megistolotis lignarius is nested within Limnodynastes, and we therefore reclassify this species as Limnodynastes lignarius. Furthermore, specimens identified as L. depressus form a mtDNA lineage distinct from other species in the genus, confirming the validity of the species. Specimens of species from the L. dorsalis group (L. dorsalis, L. dumerilii, L. interioris, and L. terraereginae) are closely related such that L. dumerilii is paraphyletic with two other species. Finally, our study provides broad support for previous phylogenies based on microcomplement fixation.  相似文献   

6.
New applications of DNA and RNA sequencing are expanding the field of biodiversity discovery and ecological monitoring, yet questions remain regarding precision and efficiency. Due to primer bias, the ability of metabarcoding to accurately depict biomass of different taxa from bulk communities remains unclear, while PCR‐free whole mitochondrial genome (mitogenome) sequencing may provide a more reliable alternative. Here, we used a set of documented mock communities comprising 13 species of freshwater macroinvertebrates of estimated individual biomass, to compare the detection efficiency of COI metabarcoding (three different amplicons) and shotgun mitogenome sequencing. Additionally, we used individual COI barcoding and de novo mitochondrial genome sequencing, to provide reference sequences for OTU assignment and metagenome mapping (mitogenome skimming), respectively. We found that, even though both methods occasionally failed to recover very low abundance species, metabarcoding was less consistent, by failing to recover some species with higher abundances, probably due to primer bias. Shotgun sequencing results provided highly significant correlations between read number and biomass in all but one species. Conversely, the read–biomass relationships obtained from metabarcoding varied across amplicons. Specifically, we found significant relationships for eight of 13 (amplicons B1FR‐450 bp, FF130R‐130 bp) or four of 13 (amplicon FFFR, 658 bp) species. Combining the results of all three COI amplicons (multiamplicon approach) improved the read–biomass correlations for some of the species. Overall, mitogenomic sequencing yielded more informative predictions of biomass content from bulk macroinvertebrate communities than metabarcoding. However, for large‐scale ecological studies, metabarcoding currently remains the most commonly used approach for diversity assessment.  相似文献   

7.
The Australo-Papuan family Petroicidae (Aves: Passeriformes) has been the focus of much systematic debate about its relationships with other passerine families, as well as relationships within the family. Mostly conservative morphology within the group limits the effectiveness of traditional taxonomic analyses and has contributed to ongoing systematic debate. To assess relationships within the family, we sampled 47 individuals from 26 species, representing the majority of genera and species, for four loci: 528 base pairs (bp) of C-myc, 501 bp of BA20454 and 336 bp of BA23989 from nuclear DNA and 1005 bp of the mitochondrial ND2 gene. There was consensus between individual loci and overall support for major lineages was strong. Partitioned Bayesian analyses of all four loci produced a fully resolved and very well-supported phylogeny that addresses many of the previous systematic debates in this group. The Eopsaltriinae as construed is monophyletic with the exception of Eopsaltria flaviventris, which is nested within Microeca as an unremarkable member of that genus. This relationship is corroborated by morphology and egg color and pattern. Petroicinae as currently construed was not monophyletic and comprised two lineages that are paraphyletic with respect to each other. The third subfamily, Drymodinae, remains incertae sedis. The mangrove robin, Peneonanthe pulverulenta, of tropical Australia and New Guinea is nested within a clade that also contained the sampled species of Peneothello and Melanodryas, a novel relationship. Preliminary biogeographic and divergence time estimates from these results are discussed and a new subfamily arrangement proposed.  相似文献   

8.
Aim Geographic affinities were analysed for nodule bacteria (Bradyrhizobium sp. Jordan) associated with two legume trees indigenous to the Philippines: Pterocarpus indicus (Papilionoideae) and Wallaceodendron celebicum (Mimosoideae). Location Nodule bacteria from Luzon, the Philippines, were compared with reference strains from Central America, eastern North America, Japan, Korea, China and Australia. Methods Two PCR assays targetting length polymorphisms in the rRNA region were carried out on 96 Philippine bacterial isolates. A 496‐bp portion of the 23S rRNA gene was sequenced in 14 representative isolates. Eight strains were analysed in greater depth by sequencing portions of four other genes (16S rRNA [1410 bp], dnaK [603 bp], nifD [822 bp], recA [512 bp]), and phylogenetic trees were constructed by maximum parsimony, neighbour joining and maximum likelihood methods. Results Most of the Philippine Bradyrhizobium strains showed greater similarity to reference strains from Central America than to strains from other source regions included in the analysis. However, phylogenetic trees for the five genes had significantly conflicting topologies, suggesting that lateral gene transfer events had altered genealogical relationships at different loci. In particular, two Philippine strains resembled Bradyrhizobium strains from Central America or China for 16S rRNA, dnaK and recA sequences, but had nifD sequences that clustered with Australian strains (with bootstrap support values of 90–96%). Main conclusions The Philippines have been colonized by Bradyrhizobium strains from multiple source regions. Subsequent lateral gene transfer has resulted in the evolution of Bradyrhizobium strains that combine DNA segments of different geographic origin.  相似文献   

9.
Cyrtandra (Gesneriaceae) is a genus of flowering plants with over 800 species distributed throughout Southeast Asia and the Pacific Islands. On the Hawaiian Islands, 60 named species and over 89 putative hybrids exist, most of which are identified on the basis of morphology. Despite many previous studies on the Hawaiian Cyrtandra lineage, questions regarding the reconciliation of morphology and genetics remain, many of which can be attributed to the relatively young age and evidence of hybridization between species. We utilized targeted enrichment, high‐throughput sequencing, and modern phylogenomics tools to test 31 Hawaiian Cyrtandra samples (22 species, two putative hybrids, four species with two samples each, one species with four samples) and two outgroups for species relationships and hybridization in the presence of incomplete lineage sorting (ILS). Both concatenated and species‐tree methods were used to reconstruct species relationships, and network analyses were conducted to test for hybridization. We expected to see high levels of ILS and putative hybrids intermediate to their parent species. Phylogenies reconstructed from the concatenated and species‐tree methods were highly incongruent, most likely due to high levels of incomplete lineage sorting. Network analyses inferred gene flow within this lineage, but not always between taxa that we expected. Multiple hybridizations were inferred, but many were on deeper branches of the island lineages suggesting a long history of hybridization. We demonstrated the utility of high‐throughput sequencing and a phylogenomic approach using 569 loci to understanding species relationships and gene flow in the presence of ILS.  相似文献   

10.
Similarities between frogs in the faunas of southwestern and southeastern Australia have long been viewed as indicators of close genetic relationships and recent (Pleistocene) divergences. We studied albumin evolution in 16 east-west species pairs of frogs representing six genera to assess the validity of these conclusions. Analysis of albumin evolution in western species of Heleioporus and some species of Litoria suggested recent speciation in these genera, with the closest sister groups occurring in the western and not among the eastern fauna. All divergences measured between eastern and western cognate species point to a Tertiary separation extending from the late Miocene to the early Oligocene. Micro-complement fixation studies provide an independent estimation of both genetic relationships between species pairs and the time of divergence of each species pair, allowing the testing of models of speciation and vicariance biogeography in a way not possible with earlier methodologies.  相似文献   

11.
North American field crickets (genus Gryllus) exhibit a diversity of life cycles, habitat associations, and calling songs. However, patterns of evolution for these ecological and behavioral traits remain uncertain in the absence of a robust phylogenetic framework. Analyses of morphological variation have provided few clues about species relationships in the genus Gryllus. Here we use comparisons of mitochondrial DNA restriction site maps for 29 individuals representing 11 species (including potential outgroups) to examine relationships among eastern North American field crickets. Initially chosen as likely outgroup taxa, the two European species of Gryllus do not obviously fall outside of an exclusively North American clade and (based on amount of sequence divergence) appear to have diverged from North American lineages at about the same time that major North American lineages diverged from each other. The egg-overwintering crickets comprise a strongly supported monophyletic group, but relationships among these three closely related species cannot be resolved. The mtDNA data are consistent with a single origin of egg diapause and do not support a model of recent life cycle divergence and allochronic speciation for Gryllus pennsylvanicus and G. veletis. The two crickets are not sister species, despite remarkable similarity in morphology, habitat, and calling song. This conclusion is consistent with published data on allozyme variation in North American field crickets. The habitat associations of eastern North American field crickets have been labile, but calling songs sometimes have remained virtually unchanged across multiple speciation events.  相似文献   

12.
The relative importance of the Pleistocene glacial cycles in driving avian speciation remains controversial, partly because species limits in many groups remain poorly understood, and because current taxonomic designations are often based on phenotypic characteristics of uncertain phylogenetic significance. We use mtDNA sequence data to examine patterns of genetic variation, sequence divergence and phylogenetic relationships between phenotypically distinct groups of the yellow-rumped warbler complex. Currently classified as a single species, the complex is composed of two North American migratory forms (myrtle warbler Dendroica coronata coronata and Audubon's warbler Dendroica coronata auduboni), and two largely sedentary forms: Dendroica coronata nigrifrons of Mexico, and Dendroica coronata goldmani of Guatemala. The latter are typically considered to be races of the Audubon's warbler based on plumage characteristics. However, mtDNA sequence data reveal that sedentary Mesoamerican forms are reciprocally monophyletic to each other and to migratory forms, from which they show a long history of isolation. In contrast, migratory myrtle and Audubon's warblers form a single cluster due to high levels of shared ancestral polymorphism as evidenced by widespread sharing of mtDNA haplotypes despite marked phenotypic differentiation. Sedentary and migratory forms diverged in the early Pleistocene, whereas phenotypic differentiation between the two migratory forms has occurred in the Holocene and is likely the result of geographical isolation and subsequent range expansion since the last glaciation. Our results underscore the importance of Quaternary climatic events in driving songbird speciation and indicate that plumage traits can evolve remarkably fast, thus rendering them potentially misleading for inferring systematic relationships.  相似文献   

13.
Domestic pigeons are spectacularly diverse and exhibit variation in more traits than any other bird species [1]. In The Origin of Species, Charles Darwin repeatedly calls attention to the striking variation among domestic pigeon breeds-generated by thousands of years of artificial selection on a single species by human breeders-as a model for the process of natural divergence among wild populations and species [2]. Darwin proposed a morphology-based classification of domestic pigeon breeds [3], but the relationships among major groups of breeds and their geographic origins remain poorly understood [4, 5]. We used a large, geographically diverse sample of 361 individuals from 70 domestic pigeon breeds and two free-living populations to determine genetic relationships within this species. We found unexpected relationships among phenotypically divergent breeds as well as convergent evolution of derived traits among several breed groups. Our findings also illuminate the geographic origins of breed groups in India and the Middle East and suggest that racing breeds have made substantial contributions to feral pigeon populations.  相似文献   

14.
Salamander populations of the Plethodon jordani species complex form a challenging system for applying the general lineage concept of species to diagnose population-level lineages. The present study reports and analyses mitochondrial-DNA haplotypes (∼1200 nucleotide bases from the genes encoding ND2, tRNATrp, and tRNAAla from 438 salamanders) from 100 populations representing six species of the P. jordani complex ( Plethodon amplus , Plethodon cheoah , Plethodon jordani , Plethodon meridianus , Plethodon metcalfi , and Plethodon montanus ) with comparative analyses of previously published allozymic data to reconstruct the evolutionary history of this group and to diagnose species lineages. Analyses of mitochondrial haplotypic data include nested-cladistic analysis of phylogeography, analysis of molecular variance, hierarchical analysis of nucleotide-diversity measures, and likelihood-based estimates of recent temporal changes in population size. New analyses of allozymic data include multidimensional scaling and principal component analyses, and both data sets are analysed and compared for congruent genetic structure using Mantel correlation tests. These analyses in combination identify the six named species as distinct evolutionary lineages despite sporadic genetic exchanges among them and some discordance between mitochondrial DNA and allozymic markers. Sexual isolation is not complete for any pair of these six species, but they replace each other geographically and appear to block the geographical spreading of their neighbours. The P. jordani complex is a strong study system for investigating the genetic and ecological processes responsible for vicariant speciation.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 25–51.  相似文献   

15.
There are 14 species of marmots distributed across the Holarctic, and despite extensive systematic study, their phylogenetic relationships remain largely unresolved. In particular, comprehensive studies have been lacking. A well-supported phylogeny is needed to place the numerous ecological and behavioral studies on marmots in an evolutionary context. To address this situation, we obtained complete cytochrome (cyt) b sequences for 13 of the species and a partial sequence for the 14th. We applied a statistical approach to both phylogeny estimation and hypothesis testing, using parsimony and maximum likelihood-based methods. We conducted statistical tests on a suite of previously proposed hypotheses of phylogenetic relationships and biogeographic histories. The cyt b data strongly support the monophyly of Marmota and a western montane clade in the Nearctic. Although some other scenarios cannot be rejected, the results are consistent with an initial diversification in North America, followed by an invasion and subsequent rapid diversification in the Palearctic. These analyses reject the two major competing hypotheses of M. broweri's phylogenetic relationships--namely, that it is the sister species to M. camtschatica of eastern Siberia, and that it is related closely to M. caligata of the Nearctic. The Alaskan distribution of M. broweri is best explained as a reinvasion from the Palearctic, but a Nearctic origin can not be rejected. Several other conventionally recognized species groups can also be rejected. Social evolution has been homoplastic, with large colonial systems evolving in two groups convergently. The cyt b data do not provide unambiguous resolution of several basal nodes in the Palearctic radiation, leaving some aspects of pelage and karyotypic evolution equivocal.  相似文献   

16.
Hybrid zones have yielded considerable insight into many evolutionary processes, including speciation and the maintenance of species boundaries. Presented here are analyses from a hybrid zone that occurs among three salamanders –Plethodon jordani, Plethodon metcalfi and Plethodon teyahalee– from the southern Appalachian Mountains. Using a novel statistical approach for analysis of non‐clinal, multispecies hybrid zones, we examined spatial patterns of variation at four markers: single‐nucleotide polymorphisms (SNPs) located in the mtDNA ND2 gene and the nuclear DNA ILF3 gene, and the morphological markers of red cheek pigmentation and white flecks. Concordance of the ILF3 marker and both morphological markers across four transects is observed. In three of the four transects, however, the pattern of mtDNA is discordant from all other markers, with a higher representation of P. metcalfi mtDNA in the northern and lower elevation localities than is expected given the ILF3 marker and morphology. To explore whether climate plays a role in the position of the hybrid zone, we created ecological niche models for P. jordani and P. metcalfi. Modelling results suggest that hybrid zone position is not determined by steep gradients in climatic suitability for either species. Instead, the hybrid zone lies in a climatically homogenous region that is broadly suitable for both P. jordani and P. metcalfi. We discuss various selective (natural selection associated with climate) and behavioural processes (sex‐biased dispersal, asymmetric reproductive isolation) that might explain the discordance in the extent to which mtDNA and nuclear DNA and colour‐pattern traits have moved across this hybrid zone.  相似文献   

17.
Mechanisms underlying species richness patterns remain a central yet controversial issue in biology. Climate has been regarded as a major determinant of species richness. However, the relative influences of different evolutionary processes, (i.e. niche conservatism, diversification rate and time for speciation) on species richness–climate relationships remain to be tested. Here, using newly compiled distribution maps for 11 422 woody plant species in eastern Eurasia, we estimated species richness patterns for all species and for families with tropical and temperate affinities separately, and explored the phylogenetic signals in species richness patterns of different families and their relationships with contemporary climate and climate change since the Last Glacial Maximum (LGM). We further compared the effects of niche conservatism (represented by contemporary-ancestral climatic niches differences), diversification rate and time for speciation (represented by family age) on variation in the slopes of species richness–climate relationships. We found that winter coldness was the best predictor for species richness patterns of most tropical families while Quaternary climate change was the best predictor for those of most temperate families. Species richness patterns of closely-related families were more similar than those of distantly-related families within eudicots, and significant phylogenetic signals characterized the slopes of species richness–climate relationships across all angiosperm families. Contemporary-ancestral climatic niche differences dominated variation in the relationships between family-level species richness and most climate variables. Our results indicate significant phylogenetic conservatism in family-level species richness patterns and their relationships with contemporary climate within eudicots. These findings shed light on the mechanisms underlying large-scale species richness patterns and suggest that ancestral climatic niche may influence the evolution of species richness–climate relationships in plants through niche conservatism.  相似文献   

18.
郭守玉  黄满荣 《菌物研究》2012,10(3):147-153
对具有北美东部和亚洲东部近缘生物地理学关系的大型地衣种类进行系统发育检测较少。笔者获得了石耳科中8个种10个样本nrDNA的ITS完整序列,并对本科中在分布上具有重要意义的4个种的生物地理学关系进行了分析和评估。通过对细胞核核糖体DNA变异性较强的ITS段碱基序列的比较分析,支持放射盘石耳(Umbilicaria muehlenbergii)、宾州疱脐衣(Lasallia pennsylvanica)为同种型间断分布,美味石耳(U.escu-lenta)和大叶石耳(U.mammulata)间已经达到了相当高的分化程度,为异种型间断分布。地理学分析显示该两种石耳的分化可能是由于太平洋的扩展和隔离所造成的结果。同种型间断分布种类的不同地区的样本之间的差异较小。推测了不同类型间断分布种类的分化时间,美味石耳与大叶石耳的分化发生在中新世(23~5.33 Mya)中期,白令海峡形成期间。  相似文献   

19.
Biogeographic patterns and cryptic speciation in bryophytes   总被引:6,自引:0,他引:6  
Bryophytes (mosses, liverworts, hornworts) typically have broad geographical distributions that span two or more continents. Many species show classic patterns of disjunction that are similar to those found in many other groups of organisms (e.g. eastern Asia–eastern North America), and which are thought to result from fragmentation of previously continuous ranges (i.e. vicariance). However, in the bryophytes, these disjunctions often occur at the infra-specific level and suggest that morphological uniformity may belie complex underlying genetic structure. Recent demonstrations of cryptic speciation, revealed by analyses of isozymes and DNA sequence variation, support the interpretation that genetic subdivision has occurred within some morphologically uniform species. Evidence for cryptic or nearly cryptic speciation exists for seven species of liverworts and seven mosses. In most (but not all) cases, cryptic species have broadly overlapping geographical ranges, although many are ecologically differentiated. Future work should focus on species that display 'classic' patterns of disjunction at higher taxonomic levels in other organisms (e.g. eastern North America–eastern Asia, eastern or western North America–Europe, Gondwanic), and should utilize explicitly phylogenetic approaches.  相似文献   

20.
The southeastern United States (U.S.) has experienced dynamic climatic changes over the past several million years that have impacted species distributions. In many cases, contiguous ranges were fragmented and a lack of gene flow between allopatric populations led to genetic divergence and speciation. The Southern Red-backed Salamander, Plethodon serratus, inhabits four widely disjunct regions of the southeastern U.S.: the southern Appalachian Mountains, the Ozark Plateau, the Ouachita Mountains, and the Southern Tertiary Uplands of central Louisiana. We integrated phylogenetic analysis of mitochondrial DNA sequences (1399 base pairs) with ecological niche modeling to test the hypothesis that climate fluctuations during the Pleistocene drove the isolation and divergence of disjunct populations of P. serratus. Appalachian, Ozark, and Louisiana populations each formed well-supported clades in our phylogeny. Ouachita Mountain populations sorted into two geographically distinct clades; one Ouachita clade was sister to the Louisiana clade whereas the other Ouachita clade grouped with the Appalachian and Ozark clades but relationships were unresolved. Plethodon serratus diverged from its sister taxon, P. sherando, ~5.4 million years ago (Ma), and lineage diversification within P. serratus occurred ~1.9–0.6 Ma (Pleistocene). Ecological niche models showed that the four geographic isolates of P. serratus are currently separated by unsuitable habitat, but the species was likely more continuously distributed during the colder climates of the Pleistocene. Our results support the hypothesis that climate-induced environmental changes during the Pleistocene played a dominant role in driving isolation and divergence of disjunct populations of P. serratus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号