首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Release of neuronal transmitters from nerve terminals is triggered by the molecular Ca2+ sensor synaptotagmin 1 (Syt1). Syt1 is a transmembrane protein attached to the synaptic vesicle (SV), and its cytosolic region comprises two domains, C2A and C2B, which are thought to penetrate into lipid bilayers upon Ca2+ binding. Before fusion, SVs become attached to the presynaptic membrane (PM) by the four-helical SNARE complex, which is thought to bind the C2B domain in vivo. To understand how the interactions of Syt1 with lipid bilayers and the SNARE complex trigger fusion, we performed molecular dynamics (MD) simulations at a microsecond scale. We investigated how the isolated C2 modules and the C2AB tandem of Syt1 interact with membranes mimicking either SV or PM. The simulations showed that the C2AB tandem can either bridge SV and PM or insert into PM with its Ca2+-bound tips and that the latter configuration is more favorable. Surprisingly, C2 domains did not cooperate in penetrating into PM but instead mutually hindered their insertion into the bilayer. To test whether the interaction of Syt1 with lipid bilayers could be affected by the C2B-SNARE attachment, we performed systematic conformational analysis of the C2AB-SNARE complex. Notably, we found that the C2B-SNARE interface precludes the coupling of C2 domains and promotes their insertion into PM. We performed the MD simulations of the prefusion protein complex positioned between the lipid bilayers mimicking PM and SV, and our results demonstrated in silico that the presence of the Ca2+ bound C2AB tandem promotes lipid merging. Altogether, our MD simulations elucidated the role of the Syt1-SNARE interactions in the fusion process and produced the dynamic all-atom model of the prefusion protein-lipid complex.  相似文献   

2.
Ca2+-dependent phospholipid binding to the C2A and C2B domains of synaptotagmin 1 is thought to trigger fast neurotransmitter release, but only Ca2+ binding to the C2B domain is essential for release. To investigate the underlying mechanism, we have compared the role of basic residues in Ca2+/phospholipid binding and in release. Mutations in a polybasic sequence on the side of the C2B domain beta-sandwich or in a basic residue in a top Ca2+-binding loop of the C2A domain (R233) cause comparable decreases in the apparent Ca2+ affinity of synaptotagmin 1 and the Ca2+ sensitivity of release, whereas mutation of the residue homologous to Arg233 in the C2B domain (Lys366) has no effect. Phosphatidylinositol polyphosphates co-activate Ca2+-dependent and -independent phospholipid binding to synaptotagmin 1, but the effects of these mutations on release only correlate with their effects on the Ca2+-dependent component. These results reveal clear distinctions in the Ca2+-dependent phospholipid binding modes of the synaptotagmin 1 C2 domains that may underlie their functional asymmetry and suggest that phosphatidylinositol polyphosphates may serve as physiological modulators of Ca2+ affinity of synaptotagmin 1 in vivo.  相似文献   

3.
We tested the long-standing hypothesis that synaptotagmin 1 is the Ca2+ sensor for fast neurosecretion by analyzing the intracellular Ca2+ dependence of large dense-core vesicle exocytosis in a mouse strain carrying a mutated synaptotagmin C2A domain. The mutation (R233Q) causes a twofold increase in the KD of Ca2+-dependent phospholipid binding to the double C2A-C2B domain of synaptotagmin. Using photolysis of caged calcium and capacitance measurements we found that secretion from mutant cells had lower secretory rates, longer secretory delays, and a higher intracellular Ca2+-threshold for secretion due to a twofold increase in the apparent KD of the Ca2+ sensor for fast exocytosis. Single amperometric fusion events were unchanged. We conclude that Ca2+-dependent phospholipid binding to synaptotagmin 1 mirrors the intracellular Ca2+ dependence of exocytosis.  相似文献   

4.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

5.
Syt VII is a Ca(2+) sensor that regulates lysosome exocytosis and plasma membrane repair. Because it lacks motifs that mediate lysosomal targeting, it is unclear how Syt VII traffics to these organelles. In this paper, we show that mutations or inhibitors that abolish palmitoylation disrupt Syt VII targeting to lysosomes, causing its retention in the Golgi complex. In macrophages, Syt VII is translocated simultaneously with the lysosomal tetraspanin CD63 from tubular lysosomes to nascent phagosomes in a Ca(2+)-dependent process that facilitates particle uptake. Mutations in Syt VII palmitoylation sites block trafficking of Syt VII, but not CD63, to lysosomes and phagosomes, whereas tyrosine replacement in the lysosomal targeting motif of CD63 causes both proteins to accumulate on the plasma membrane. Complexes of CD63 and Syt VII are detected only when Syt VII palmitoylation sites are intact. These findings identify palmitoylation-dependent association with the tetraspanin CD63 as the mechanism by which Syt VII is targeted to lysosomes.  相似文献   

6.
Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca2+-dependent exocytosis in PC12 cells, and we identified C-terminal amino acids in SNAP-25 (Asp179, Asp186, Asp193) that are required for Ca2+-dependent synaptotagmin binding. Replacement of SNAP-25 in PC12 cells with SNAP-25 containing C-terminal Asp mutations led to a loss-of-function in regulated exocytosis at the Ca2+-dependent fusion step. These results indicate that the Ca2+-dependent interaction of synaptotagmin with SNAP-25 is essential for the Ca2+-dependent triggering of membrane fusion.  相似文献   

7.
The C2B domain of synaptotagmin I is a Ca2+-binding module   总被引:5,自引:0,他引:5  
Ubach J  Lao Y  Fernandez I  Arac D  Südhof TC  Rizo J 《Biochemistry》2001,40(20):5854-5860
Synaptotagmin I is a synaptic vesicle protein that contains two C(2) domains and acts as a Ca(2+) sensor in neurotransmitter release. The Ca(2+)-binding properties of the synaptotagmin I C(2)A domain have been well characterized, but those of the C(2)B domain are unclear. The C(2)B domain was previously found to pull down synaptotagmin I from brain homogenates in a Ca(2+)-dependent manner, leading to an attractive model whereby Ca(2+)-dependent multimerization of synaptotagmin I via the C(2)B domain participates in fusion pore formation. However, contradictory results have been described in studies of Ca(2+)-dependent C(2)B domain dimerization, as well as in analyses of other C(2)B domain interactions. To shed light on these issues, the C(2)B domain has now been studied using biophysical techniques. The recombinant C(2)B domain expressed as a GST fusion protein and isolated by affinity chromatography contains tightly bound bacterial contaminants despite being electrophoretically pure. The contaminants bind to a polybasic sequence that has been previously implicated in several C(2)B domain interactions, including Ca(2+)-dependent dimerization. NMR experiments show that the pure recombinant C(2)B domain binds Ca(2+) directly but does not dimerize upon Ca(2+) binding. In contrast, a cytoplasmic fragment of native synaptotagmin I from brain homogenates, which includes the C(2)A and C(2)B domains, participates in a high molecular weight complex as a function of Ca(2+). These results show that the recombinant C(2)B domain of synaptotagmin I is a monomeric, autonomously folded Ca(2+)-binding module and suggest that a potential function of synaptotagmin I multimerization in fusion pore formation does not involve a direct interaction between C(2)B domains or requires a posttranslational modification.  相似文献   

8.
《Cell reports》2023,42(1):111915
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   

9.
The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+.  相似文献   

10.
In neuroendocrine cells, Ca2+ triggers fusion of granules with the plasma membrane and functions at earlier steps by increasing the size of the readily releasable pool of vesicles. The effect of Ca2+ at early steps of secretion may be due to the recruitment at the plasma membrane of granules localized in the cytoplasm. To study the mechanism of granule docking, a new in vitro assay is designed using membrane fractions from mouse pituitary AtT-20 cells. By using this assay, it is found that granule docking to the plasma membrane is controlled by Ca2+ concentrations in the micromolar range, is reversible and requires intact SNAP-25, but not VAMP-2. In the docking assay, addition of Ca2+ induces the formation of a SNAP-25-Synaptotagmin 1 complex. The cytosolic domain C2AB of Synaptotagmin 1 and anti-Synaptotagmin 1 antibodies block granule docking. These results show that Ca2+ modulates dynamic docking of granules to the plasma membrane and that this process is due to a Ca2+-dependent interaction between SNAP-25 and Synaptotagmin 1 .  相似文献   

11.
The purified PMCA supplemented with phosphatidylcholine was able to hydrolyze pNPP in a reaction media containing only Mg(2+) and K(+). Micromolar concentrations of Ca(2+) inhibited about 75% of the pNPPase activity while the inhibition of the remainder 25% required higher Ca(2+) concentrations. Acidic lipids increased 5-10 fold the pNPPase activity either in the presence or in the absence of Ca(2+). The activation by acidic lipids took place without a significant change in the apparent affinities for pNPP or K(+) but the apparent affinity of the enzyme for Mg(2+) increased about 10 fold. Thus, the stimulation of the pNPPase activity of the PMCA by acidic lipids was maximal at low concentrations of Mg(2+). Although with differing apparent affinities vanadate, phosphate, ATP and ADP were all inhibitors of the pNPPase activity and their effects were not significantly affected by acidic lipids. These results indicate that (a) the phosphatase function of the PMCA is optimal when the enzyme is in its activated Ca(2+) free conformation (E2) and (b) the PMCA can be activated by acidic lipids in the absence of Ca(2+) and the activation improves the interaction of the enzyme with Mg(2+).  相似文献   

12.
13.
Tay LH  Griesbeck O  Yue DT 《Biophysical journal》2007,93(11):4031-4040
Genetically encoded Ca2+ sensors promise sustained in vivo detection of Ca2+ signals. However, these sensors are sometimes challenged by inconsistent performance and slow/uncertain kinetic responsiveness. The former challenge may arise because most sensors employ calmodulin (CaM) as the Ca2+-sensing module, such that interference via endogenous CaM may result. One class of sensors that could minimize this concern utilizes troponin C as the Ca2+ sensor. Here, we therefore probed the reliability and kinetics of one representative of this class (cyan fluorescence protein/yellow fluorescent protein-fluorescence resonance energy transfer (FRET) sensor TN-L15) within cardiac ventricular myocytes. These cells furnished a pertinent live-cell test environment, given substantial endogenous CaM levels and fast reproducible Ca2+ transients for testing sensor kinetics. TN-L15 was virally expressed within myocytes, and Indo-1 acutely loaded to monitor “true” Ca2+ transients. This configuration permitted independent and simultaneous detection of TN-L15 and Indo-1 signals within individual cells. The relation between TN-L15 FRET responses and Indo-1 Ca2+ transients appeared reproducible, though FRET signals were delayed compared to Ca2+ transients. Nonetheless, a three-state mechanism sufficed to map between measured Ca2+ transients and actual TN-L15 outputs. Overall, reproducibility of TN-L15 dynamics, coupled with algorithmic transforms between FRET and Ca2+ signals, renders these sensors promising for quantitative estimation of Ca2+ dynamics in vivo.  相似文献   

14.
In the current understanding of exocytosis at the nerve terminal, the C2 domain of synaptotagmin (C2A) is presumed to bind Ca2+ and the membrane in a stepwise fashion: cation then membrane as cation increases the affinity of protein for membrane. Fluorescence spectroscopy data were gathered over a variety of lipid and Ca2+ concentrations, enabling the rigorous application of microscopic binding models derived from partition functions to differentiate between Ca2+ and phosphatidylserine contributions to binding. The data presented here are in variance with previously published models, which were based on the Hill approximation. Rather, the data are consistent with two forms of cooperativity that modulate the responsiveness of C2A: in Ca2+ binding to a network of three cation sites and in interaction with the membrane surface. We suggest synaptotagmin I C2A is preassociated with the synaptic vesicle membrane or nerve terminal. In this state, upon Ca2+ influx the protein will bind the three Ca2+ ions immediately and with high cooperativity. Thus, membrane association creates a high-affinity Ca2+ switch that is the basis for the role of synaptotagmin I in Ca2+-regulated exocytosis. Based on this model, we discuss the implications of protein-induced phosphatidylserine demixing to the exocytotic process.  相似文献   

15.
16.
Fuson KL  Montes M  Robert JJ  Sutton RB 《Biochemistry》2007,46(45):13041-13048
Release of neurotransmitter from synaptic vesicles requires the Ca2+/phospholipid-binding protein synaptotagmin 1. There is considerable evidence that cooperation between the tandem C2 domains of synaptotagmin is a requirement of regulated exocytosis; however, high-resolution structural evidence for this interaction has been lacking. The 2.7 A crystal structure of the cytosolic domains of human synaptotagmin 1 in the absence of Ca2+ reveals a novel closed conformation of the protein. The shared interface between C2A and C2B is stabilized by a network of interactions between residues on the C-terminal alpha-helix of the C2B domain and residues on loops 1-3 of the Ca2+-binding region of C2A. These interactions alter the overall shape of the Ca2+-binding pocket of C2A, but not that of C2B. Thus, synaptotagmin 1 C2A-C2B may utilize a novel regulatory mechanism whereby one C2 domain could regulate the other until an appropriate triggering event decouples them.  相似文献   

17.
Previously it demonstrated that in the absence of Ca2+ entry, evoked secretion occurs neither by membrane depolarization, induction of [Ca2+] i rise, nor by both combined (Ashery, U., Weiss, C., Sela, D., Spira, M. E., and Atlas, D. (1993). Receptors Channels 1:217–220.). These studies designate Ca2+ entry as opposed to [Ca2+] i rise, essential for exocytosis. It led us to propose that the channel acts as the Ca2+ sensor and modulates secretion through a physical and functional contact with the synaptic proteins. This view was supported by protein–protein interactions reconstituted in the Xenopus oocytes expression system and release experiments in pancreatic cells (Barg, S., Ma, X., Elliasson, L., Galvanovskis, J., Gopel, S. O., Obermuller, S., Platzer, J., Renstrom, E., Trus, M., Atlas, D., Streissnig, G., and Rorsman, P. (2001). Biophys. J.; Wiser, O., Bennett, M. K., and Atlas, D. (1996). EMBO J. 15:4100–4110; Wiser, O., Trus, M., Hernandez, A., Renström, E., Barg, S., Rorsman, P., and Atlas, D. (1999). Proc. Natl. Acad. Sci. U.S.A. 96:248–253). The kinetics of Cav1.2 (Lc-type) and Cav2.2 (N-type) Ca2+ channels were modified in oocytes injected with cRNA encoding syntaxin 1A and SNAP-25. Conserved cysteines (Cys271, Cys272) within the syntaxin 1A transmembrane domain are essential. Synaptotagmin I, a vesicle-associated protein, accelerated the activation kinetics indicating Cav2.2 coupling to the vesicle. The unique modifications of Cav1.2 and Cav2.2 kinetics by syntaxin 1A, SNAP-25, and synaptotagmin combined implied excitosome formation, a primed fusion complex of the channel with synaptic proteins. The Cav1.2 cytosolic domain Lc753–893, acted as a dominant negative modulator, competitively inhibiting insulin release of channel-associated vesicles (CAV), the readily releasable pool of vesicles (RRP) in islet cells. A molecular mechanism is offered to explain fast secretion of vesicles tethered to SNAREs-associated Ca2+ channel. The tight arrangement facilitates the propagation of conformational changes induced during depolarization and Ca2+-binding at the channel, to the SNAREs to trigger secretion. The results imply a rapid Ca2+-dependent CAV (RRP) release, initiated by the binding of Ca2+ to the channel, upstream to intracellular Ca2+ sensor thus establishing the Ca2+ channel as the Ca2+ sensor of neurotransmitter release.  相似文献   

18.
The neuronal protein synaptotagmin 1 functions as a Ca(2+) sensor in exocytosis via two Ca(2+)-binding C(2) domains. The very similar synaptotagmin 4, which includes all the predicted Ca(2+)-binding residues in the C(2)B domain but not in the C(2)A domain, is also thought to function as a neuronal Ca(2+) sensor. Here we show that, unexpectedly, both C(2) domains of fly synaptotagmin 4 exhibit Ca(2+)-dependent phospholipid binding, whereas neither C(2) domain of rat synaptotagmin 4 binds Ca(2+) or phospholipids efficiently. Crystallography reveals that changes in the orientations of critical Ca(2+) ligands, and perhaps their flexibility, render the rat synaptotagmin 4 C(2)B domain unable to form full Ca(2+)-binding sites. These results indicate that synaptotagmin 4 is a Ca(2+) sensor in the fly but not in the rat, that the Ca(2+)-binding properties of C(2) domains cannot be reliably predicted from sequence analyses, and that proteins clearly identified as orthologs may nevertheless have markedly different functional properties.  相似文献   

19.
The Na+/Ca2+ exchanger is a plasma membrane protein that regulates intracellular Ca2+ levels in cardiac myocytes. Transport activity is governed by Ca2+, and the primary Ca2+ sensor (CBD1) is located in a large cytoplasmic loop connecting two transmembrane helices. The binding of Ca2+ to the CBD1 sensory domain results in conformational changes that stimulate the exchanger to extrude Ca2+. Here, we present a crystal structure of CBD1 at 2.5A resolution, which reveals a novel Ca2+ binding site consisting of four Ca2+ ions arranged in a tight planar cluster. This intricate coordination pattern for a Ca2+ binding cluster is indicative of a highly sensitive Ca2+ sensor and may represent a general platform for Ca2+ sensing.  相似文献   

20.
More potent, but less known than IP3 that liberates Ca2+ from the ER, NAADP releases Ca2+ from acidic stores. The notion that TPC channels mediate this Ca2+ release was questioned recently by studies suggesting that TPCs are rather PI(3,5)P2‐activated Na+ channels. Ruas et al (2015) now partially reconcile these views by showing that TPCs significantly conduct both cations and confirm their activation by both NAADP and PI(3,5)P2. They attribute the failure of others to observe TPC‐dependent NAADP‐induced Ca2+ release in vivo to inadequate mouse models that retain partial TPC function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号