首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Dendritic cells (DCs) are likely to play a key role in immunity against Mycobacterium tuberculosis, but the fate of the bacterium in these cells is still unknown. Here we report that, unlike macrophages (Mphis), human monocyte-derived DCs are not permissive for the growth of virulent M. tuberculosis H37Rv. Mycobacterial vacuoles are neither acidic nor fused with host cell lysosomes in DCs, in a mode similar to that seen in mycobacterial infection of Mphis. However, uptake of the fluid phase marker dextran, and of transferrin, as well as accumulation of the recycling endosome-specific small GTPase Rab11 onto the mycobacterial phagosome, are almost abolished in infected DCs, but not in Mphis. Moreover, communication between mycobacterial phagosomes and the host-cell biosynthetic pathway is impaired, given that <10% of M. tuberculosis vacuoles in DCs stained for the endoplasmic reticulum-specific proteins Grp78/BiP and calnexin. This correlates with the absence of the fusion factor N-ethylmaleimide-sensitive factor onto the vacuolar membrane in this cell type. Trafficking between the vacuoles and the host cell recycling and biosynthetic pathways is strikingly reduced in DCs, which is likely to impair access of intracellular mycobacteria to essential nutrients and may thus explain the absence of mycobacterial growth in this cell type. This unique location of M. tuberculosis in DCs is compatible with their T lymphocyte-stimulating functions, because M. tuberculosis-infected DCs have the ability to specifically induce cytokine production by autologous T lymphocytes from presensitized individuals. DCs have evolved unique subcellular trafficking mechanisms to achieve their Ag-presenting functions when infected by intracellular mycobacteria.  相似文献   

2.
Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages.To date,many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive host response.During the early phases of infection,phagocytic cells and innate lymphocyte subsets play a pivotal role.Here we summarize the findings of recent investigations on macrophages,dendritic cells and gammadelta T lymphocytes in the response to mycobacteria.  相似文献   

3.
Pathogenic mycobacteria persist and replicate within phagosomes of host phagocytes by inhibiting phagosome maturation at an early endosome stage. The molecular basis for this behavior is not understood. To identify proteins of Mycobacterium tuberculosis unique to the intraphagosomal phase, mycobacteria were purified from phagosomes of infected murine bone marrow-derived macrophages and analyzed by high-resolution 2-DE and MS. Protein patterns of intraphagosomally grown M. tuberculosis were compared with those of broth-cultured mycobacteria. The analysis revealed 11 mycobacterial proteins exclusively detected in intraphagosomal mycobacteria. Some of these proteins are involved in metabolism and cell envelope synthesis, such as the lipid carrier protein Rv1627c, and the conserved hypothetical protein Rv1130 that shows homology to a virulence-associated protein of Legionella pneumophila. The relevance of these proteins as factors enabling intracellular survival of M. tuberculosis is being discussed.  相似文献   

4.
Toll-like receptors (TLRs) recognize Mycobacterium tuberculosis (Mtb) or Mtb components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signalling cascades involved in the TLR-initiated immune response to mycobacterial infection. Although both TLR2 and TLR4 have been implicated in host interactions with Mtb, the relationship between specific mycobacterial molecules and various signal transduction pathways is not well understood. This review will discuss recent studies indicating critical roles for mycobacteria and mycobacterial components in regulation of mitogen-activated protein kinases and related signal transduction pathways that govern the outcome of infection and antibacterial defence. To better understand the roles of infection-induced signalling cascades in molecular pathogenesis, future studies are needed to clarify mechanisms that integrate the multiple signalling pathways that are activated by engagement of TLRs by both individual mycobacterial molecules and whole mycobacteria. These efforts will allow for the development of novel diagnostic and therapeutic modalities for tuberculosis that targets the intracellular signalling pathways permitting the replication of this nefarious pathogen.  相似文献   

5.
In tuberculosis, infecting mycobacteria are phagocytosed by macrophages, which then migrate into deeper tissue and recruit additional cells to form the granulomas that eventually contain infection. Mycobacteria are exquisitely adapted macrophage pathogens, and observations in the mouse model of tuberculosis have suggested that mycobacterial growth is not inhibited in macrophages until adaptive immunity is induced. Using the optically transparent and genetically tractable zebrafish embryo-Mycobacterium marinum model of tuberculosis, we have directly examined early infection in the presence and absence of macrophages. The absence of macrophages led rapidly to higher bacterial burdens, suggesting that macrophages control infection early and are not an optimal growth niche. However, we show that macrophages play a critical role in tissue dissemination of mycobacteria. We propose that residence within macrophages represents an evolutionary trade-off for pathogenic mycobacteria that slows their early growth but provides a mechanism for tissue dissemination.  相似文献   

6.
The PE multigene family of Mycobacterium tuberculosis is remarkable in that it is composed of approximately 100 highly homologous genes that are found only in mycobacteria. Early evidence suggests that proteins encoded by certain members of this gene family could be present in the mycobacterial cell wall, impact antigen-presentation pathways and the ensuing host immune responses, and also provide a mechanism for generating antigenic diversity in mycobacteria.  相似文献   

7.
Two mechanisms are thought to be involved in the natural drug resistance of mycobacteria: the mycobacterial cell wall permeability barrier and active multidrug efflux pumps. Genes encoding drug efflux transporters have been isolated from several mycobacterial species. These proteins transport tetracycline, fluoroquinolones, aminoglycosides and other compounds. Recent reports have suggested that efflux pumps may also be involved in transporting isoniazid, one of the main drugs used to treat tuberculosis. This review highlights recent advances in our understanding of efflux-mediated drug resistance in mycobacteria, including the distribution of efflux systems in these organisms, their substrate profiles and their contribution to drug resistance. The balance between the drug transport into the cell and drug efflux is not yet clearly understood, and further studies are required in mycobacteria.  相似文献   

8.
Cellular and humoral immunity induced by Mycobacterium tuberculosis has led to identification of newer vaccine candidates, but despite this, many questions concerning the protection against tuberculosis remain unanswered. Recent progress in this field has centered on T cell subset responses and cytokines that these cells secrete. There has been a steady progress in identification and characterization of several classes of major mycobacterial proteins which includes secretory/export proteins, cell wall associated proteins, heat shock proteins and cytoplasmic proteins. The protein antigens are now believed to represent the key protective immunity inducing antigens in the bacillus. In this review, various mycobacterial protein antigens of vaccination potential are compared for their efficacy in light of current immunological knowledge.  相似文献   

9.
The molecular aetiology of familial susceptibility to disseminated mycobacterial disease, usually involving weakly pathogenic strains of mycobacteria, has now been elucidated in more than 30 families. Mutations have been identified in five genes in the interleukin-12-dependent interferon-gamma pathway, highlighting the importance of this pathway in human mycobacterial immunity. Knowledge derived from the study of these rare patients contributes to our understanding of the immune response to common mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium leprae, which remain major public health problems globally. This knowledge can be applied to the rational development of novel therapies and vaccines for these important mycobacterial diseases.  相似文献   

10.
During tuberculosis (TB) infection, the granuloma provides the microenvironment in which antigen-specific T cells colocate with and activate infected macrophages to inhibit the growth of Mycobacterium tuberculosis. Although the granuloma is the site for mycobacterial killing, virulent mycobacteria have developed a variety of mechanisms to resist this macrophage-mediated killing. These surviving mycobacteria become dormant, however, if host cellular immunity or the signals maintaining granuloma structure wane, or if mycobacteria resume replication, leading to reactivation of TB. This balance of life and death applies not only to the mycobacterium but also to the host macrophages that may undergo apoptosis or necrosis, leading to the characteristic caseous necrosis within the granuloma, and the potential spread of TB infection. The immunological factors controlling the development and maintenance of the granuloma will be reviewed.  相似文献   

11.
The SecA2 protein is part of a specialized protein export system of mycobacteria. We set out to identify proteins exported to the bacterial cell envelope by the mycobacterial SecA2 system. By comparing the protein profiles of cell wall and membrane fractions from wild-type and DeltasecA2 mutant Mycobacterium smegmatis, we identified the Msmeg1712 and Msmeg1704 proteins as SecA2-dependent cell envelope proteins. These are the first endogenous M. smegmatis proteins identified as dependent on SecA2 for export. Both proteins are homologous to periplasmic sugar-binding proteins of other bacteria, and both contain functional amino-terminal signal sequences with lipobox motifs. These two proteins appeared to be genuine lipoproteins as shown by Triton X-114 fractionation and sensitivity to globomycin, an inhibitor of lipoprotein signal peptidase. The role of SecA2 in the export of these proteins was specific; not all mycobacterial lipoproteins required SecA2 for efficient localization or processing. Finally, Msmeg1704 was recognized by the SecA2 pathway of Mycobacterium tuberculosis, as indicated by the appearance of an export intermediate when the protein was expressed in a DeltasecA2 mutant of M. tuberculosis. Taken together, these results indicate that a select subset of envelope proteins containing amino-terminal signal sequences can be substrates of the mycobacterial SecA2 pathway and that some determinants for SecA2-dependent export are conserved between M. smegmatis and M. tuberculosis.  相似文献   

12.
Identification of the novel PE multigene family was an unexpected finding of the genomic sequencing of Mycobacterium tuberculosis. Presently, the biological role of the PE and PE_PGRS proteins encoded by this unique family of mycobacterial genes remains unknown. In this report, a representative PE_PGRS gene (Rv1818c/PE_PGRS33) was selected to investigate the role of these proteins. Cell fractionation studies and fluorescence analysis of recombinant strains of Mycobacterium smegmatis and M. tuberculosis expressing green fluorescent protein (GFP)-tagged proteins indicated that the Rv1818c gene product localized in the mycobacterial cell wall, mostly at the bacterial cell poles, where it is exposed to the extracellular milieu. Further analysis of this PE_PGRS protein showed that the PE domain is necessary for subcellular localization. In addition, the PGRS domain, but not PE, affects bacterial shape and colony morphology when Rv1818c is overexpressed in M. smegmatis and M. tuberculosis. Taken together, the results indicate that PE_PGRS and PE proteins can be associated with the mycobacterial cell wall and influence cellular structure as well as the formation of mycobacterial colonies. Regulated expression of PE genes could have implications for the survival and pathogenesis of mycobacteria within the human host and in other environmental niches.  相似文献   

13.
14.
The increased incidence of tuberculosis (TB) gave impetus for the increased interest in the study of mycobacterial genetics, which culminated in the publication of the full genome sequence of many mycobacterial strains. Since then, many genes and open reading frames of unknown function have been described and the expression of their encoded proteins is critical toward understanding the pathogenesis of TB and developing therapeutic and preventive strategies. Therefore there is an increased need for highly efficient methods for cloning of mycobacterial genes, as the limited cloning flexibility of current Escherichia coli–mycobacteria shuttle vectors remains a frequent impediment in genetic manipulation of mycobacteria. In order to overcome this limitation, we have converted representative extrachromosomal and integrative vectors into multiple destination mycobacterial vectors for one-step and restriction enzyme-free recombination cloning methodology that uses in vitro site-specific recombination. We provide several examples that highlight the potential of recombination cloning for gene expression in slow and fast-growing mycobacteria. Thus, a gene of interest can be transferred by simple recombination into our mycobacterial destination vectors, which serve a multitude of functional genomic studies.  相似文献   

15.
16.
Protective immunity against Mycobacterium tuberculosis involves major histocompatibility complex class I (MHC-I)- and CD1-restricted CD8 T cells, but the mechanisms underlying antigen delivery to antigen-presenting molecules remain enigmatic. Macrophages, the primary host cells for mycobacteria, are CD1-negative. Here we show that M. tuberculosis phagosomes are secluded from the cytosolic MHC-I processing pathway and that mycobacteria-infected cells lose their antigen-presenting capacity. We also show that mycobacteria induce apoptosis in macrophages, causing the release of apoptotic vesicles that carry mycobacterial antigens to uninfected antigen-presenting cells (APCs). Inhibition of apoptosis reduced transfer of antigens to bystander cells and activation of CD8 T cells. Uninfected dendritic cells, which engulfed extracellular vesicles, were indispensable for subsequent cross-presentation of antigens, through MHC-I and CD1b, to T cells from mycobacteria-sensitized donors. This new 'detour' pathway for presentation of antigens from a phagosome-contained pathogen shows the functional significance of infection-induced apoptosis in the activation of CD8 T cells specific for both protein and glycolipid antigens in tuberculosis.  相似文献   

17.
During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.  相似文献   

18.
Bacteriophages are central components in the development of molecular tools for microbial genetics. Mycobacteriophages have proven to be a rich resource for tuberculosis genetics, and the recent development of a mycobacterial recombineering system based on mycobacteriophage Che9c-encoded proteins offers new approaches to mycobacterial mutagenesis. Expression of the phage exonuclease and recombinase substantially enhances recombination frequencies in both fast- and slow-growing mycobacteria, thereby facilitating construction of both gene knockout and point mutants; it also provides a simple and efficient method for constructing mycobacteriophage mutants. Exploitation of host-specific phages thus provides a general strategy for recombineering and mutagenesis in genetically naive systems.  相似文献   

19.
Recent studies have uncovered new mechanisms by which the human immune system attempts to control infection and how pathogens elude these mechanisms. Mycobacterial infections are prime examples of chronic battle fields between host and pathogens. The study of tuberculosis and related mycobacterial infectious diseases such as leprosy have greatly aided in deciphering mechanisms of immune mediated protection and pathology in humans. Here we review recent insights into the role of newly discovered T cell subsets including Th17, Tregs and nonclassically restricted T cells in adaptive immunity to mycobacteria. The role of newly discovered innate immune mechanisms in tuberculosis and leprosy along with recent results from 'unbiased' genome-wide and functional genetic approaches, are deciphering critical host pathways in human infectious disease.  相似文献   

20.
Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4. This contrasted with Gram-positive bacteria and Mycobacterium avium, which activated cells via TLR2 but not TLR4. Both virulent and attenuated strains of M. tuberculosis could activate the cells in a TLR-dependent manner. Neither membrane-bound nor soluble CD14 was required for bacilli to activate cells in a TLR-dependent manner. We also assessed whether LAM was the mycobacterial cell wall component responsible for TLR-dependent cellular activation by M. tuberculosis. We found that TLR2, but not TLR4, could confer responsiveness to LAM isolated from rapidly growing mycobacteria. In contrast, LAM isolated from M. tuberculosis or Mycobacterium bovis bacillus Calmette-Guérin failed to induce TLR-dependent activation. Lastly, both soluble and cell wall-associated mycobacterial factors were capable of mediating activation via distinct TLR proteins. A soluble heat-stable and protease-resistant factor was found to mediate TLR2-dependent activation, whereas a heat-sensitive cell-associated mycobacterial factor mediated TLR4-dependent activation. Together, our data demonstrate that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号