首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polyadenylate [poly(A)] content of the genome RNA of human rhinovirus type 14 (HRV-14) is nearly twice as large as that of the genome RNA of poliovirus type 2. The poly(A) content of viral RNA was determined to be the RNase-resistant fraction of 32P-labeled viral RNA extracted from purified virions. Polyacrylamide gel electrophoresis indicated that the poly(A) sequences of HRV-14 are more heterogenous and on an average larger than those of poliovirus RNA. On the basis of susceptibility to micrococcal polynucleotide phosphorylase the rhinovirus genome terminates in poly(A). Replication of both viruses is almost totally inhibited by cordycepin at 50 mug/ml. At lower concentrations, rhinovirus replication is more sensitive to cordycepin than poliovirus replication. Addition of cordycepin (75 mug/ml) to infected culture prior to or during viral RNA replication results in more or less complete inhibition of virus-specific RNA synthesis. The results do not indicate that cordycepin sensitivity of either virus is due to preferential inhibition of viral poly(A) synthesis by this antibiotic.  相似文献   

2.
3.
An immunochemical binding assay was used to investigate the reactivity of radioactively labeled viral RNAs from poliovirus-infected cells with antibodies to the synthetic double-stranded RNA, poly(I)-poly(C). A RNase-free antibody-containing serum fraction was employed. Poliovirus replicative form reacted with the antibodies to poly(I)-poly(C) as well as or better than poly(I)-poly(C). Poliovirus replicative intermediate reacted with the antibodies to a greater extent than poliovirus single-stranded RNA, but both were less reactive than replicative form. The use of the immunochemical binding assay with sucrose-gradient fractions demonstrated that for both poliovirus single-stranded RNA and replicative form the peak of reactivity with the antibodies was coincident with the peak of radioactive material precipitated by trichloroacetic acid. The proportion of replicative intermediate that reacted with the antibody increased in sucrose-gradient fractions containing the more slowly sedimenting RI RNA.  相似文献   

4.
A poliovirus-specific polyuridylic acid [poly(U)] polymerase that copies a polyadenylic acid template complexed to an oligouridylic acid primer was isolated from the membrane fraction of infected HeLa cells and was found to sediment at 4 to 5S on a linear 5 to 20% glycerol gradient. When the poly(U) polymerase was isolated from cells labeled with [(35)S]methionine and was analyzed by glycerol gradient centrifugation and polyacrylamide gel electrophoresis, the position of only one viral protein was found to correlate with the location of enzyme activity. This protein had an apparent molecular weight of 62,500 based on its electrophoretic mobility relative to that of several molecular weight standards and was designated p63. When the poly(U) polymerase was isolated from the soluble fraction of a cytoplasmic extract, the activity was found to sediment at about 7S. In this case, however, both p63 and NCVP2 (77,000-dalton precursor of p63) cosedimented with the 7S activity peak. When the 7S polymerase activity was purified by phosphocellulose chromatography, both p63 and NCVP2 were found to co-chromatograph with poly(U) polymerase activity. The poliovirus replicase complexed with its endogenous RNA template was isolated from infected cells labeled with [(35)S]methionine and was centrifuged through a linear 15 to 30% glycerol gradient. The major viral polypeptide component in a 26S peak of replicase activity was p63, but small amounts of other poliovirus proteins were also present. When the replicase-template complex was treated with RNase T1 before centrifugation, a single peak of activity was found that sedimented at 20S and contained only labeled p63. Thus, p63 was found to be the only viral polypeptide in the replicase bound to its endogenous RNA template, and appears to be active as a poly(U) polymerase either as a monomer protein or as a 7S complex.  相似文献   

5.
The size of the product RNA synthesized by the poliovirus RNA polymerase and host factor was significantly affected by the type of column chromatography used to purify the polymerase. Dimer length product RNA was synthesized by the polymerase purified by chromatography on hydroxylapatite. This contrasted with the monomer length product RNA synthesized by the polymerase purified by chromatography on poly(U) Sepharose. The poly(U) Sepharose-purified polymerase was shown to contain oligo(U) that functioned as a primer. The addition of host factor to reactions containing the poly(U) Sepharose-purified polymerase significantly increased the synthesis of monomer length product RNA, in agreement with previous studies. This product RNA, however, did not immunoprecipitate with anti-VPg antibody and thus was not linked to VPg or a VPg-related protein. Thus, it was concluded that the synthesis of monomer length product RNA by the poly(U) Sepharose-purified polymerase and host factor was caused by oligo(U) priming rather than VPg priming.  相似文献   

6.
Polyadenylic acid on poliovirus RNA. II. poly(A) on intracellular RNAs.   总被引:40,自引:25,他引:15       下载免费PDF全文
The content, size, and mechanism of synthesis of 3'-terminal poly(A) on the various intracellular species of poliovirus RNA have been examined. All viral RNA species bound to poly(U) filters and contained RNase-resistant stretches of poly(A) which could be analyzed by electrophoresis in polyacrylamide gels. At 3 h after infection, the poly(A) on virion RNA, relicative intermediate RNA, polyribosomal RNA, and total cytoplasmic 35S RNA was heterogeneous in size with an average length of 75 nucleotides. By 6 h after infection many of the intracellular RNA's had poly(A) of over 150 nucleotides in length, but the poly(A) in virion RNA did not increase in size suggesting that the amount of poly(A) which can be encapsidated is limited. At all times, the double-stranded poliovirus RNA molecules had poly(A) of 150 to 200 nucleotides. Investigation of the kinetics of poly(A) appearance in the replicative intermediate and in finished 35S molecules indicated that poly(A) is the last portion of the 35S RNA to be synthesized; no nascent poly(A) could be detected in the replicative intermediate. Although this result indicates that poliovirus RNA is synthesized 5' leads to 3' like other RNA's, it also suggests that much of the poly(A) found in the replicative intermediate is an artifact possibly arising from the binding of finished 35S RNA molecules to the replicative intermediate during extraction. The addition of poly(A) to 35S RNA molecules was not sensitive to guanidene.  相似文献   

7.
8.
The RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) NS5B gene has been expressed as a nonfusion protein in bacterial cells and purified to homogeneity using sequential chromatographic columns. The purified NS5B protein exhibited RNA-dependent RNA polymerase activity using poly(A) template and the K(m) and V(max) were determined as 8.4 microM and 1976 pmol/mg-min, respectively. This full-length NS5B protein exhibited much stronger binding affinity toward the 30-mer poly(G) than other homopolymeric RNAs of the same size. For the first time, we demonstrate that the HCV NS5B was able to bind various ribonucleotides. Using a panel of oligonucleotides varying in length, we studied the NS5B catalytic efficiency and proposed the size of the NS5B active site to be 8-10 nucleotides. The multifunctional nature of NS5B protein is also discussed and compared with other viral RNA polymerases.  相似文献   

9.
The poliovirus RNA-dependent RNA polymerase was active on synthetic homopolymeric RNA templates as well as on every natural RNA tested. The polymerase copied polyadenylate. oligouridylate [oligo(U)], polycytidylate . oligoinosinate, and polyinosinate. oligocytidylate templates to about the same extent. The observed activity on polyuridylate. oligoadenylate was about fourfold less. Full-length copies of both poliovirion RNA and a wide variety of other polyadenylated RNAs were synthesized by the polymerase in the presence of oligo(U). Polymerase elongation rates on poliovirion RNA and a heterologous RNA (squash mosaic virus RNA) were about the same. Changes in the Mg(2+) concentration affected the elongation rates on both RNAs to the same extent. With two non-polyadenylated RNAs (tobacco mosaic virus RNA and brome mosaic virus RNA3), the results were different. The purified polymerase synthesized a subgenomic-sized product RNA on brome mosaic virus RNA3 in the presence of oligo(U). This product RNA appeared to initiate on oligo(U) hybridized to an internal oligoadenylate sequence in brome mosaic virus RNA3. No oligo(U)-primed product was synthesized on tobacco mosaic virus RNA. When partially purified polymerase was used in place of the completely purified enzyme, some oligo(U)-independent activity was observed on the brome mosaic virus and tobacco mosaic virus RNAs. The size of the product RNA from these reactions suggested that at least some of the product RNA was full-sized and covalently linked to the template RNA. Thus, the polymerase was found to copy many different types of RNA and to make full-length copies of the RNAs tested.  相似文献   

10.
Poliovirus-specific RNA-dependent RNA polymerase (replicase, 3Dpol) was purified from HeLa cells infected with poliovirus. The purified enzyme preparation contained two proteins of apparent molecular weights 63,000 and 35,000. The 63,000-Mr polypeptide was virus-specific RNA-dependent RNA polymerase, and the 35,000-Mr polypeptide was of host origin. Both polypeptides copurified through five column chromatographic steps. The purified enzyme preparation catalyzed synthesis of covalently linked dimeric RNA products from a poliovirion RNA template. This reaction was absolutely dependent on added oligo(U) primer, and the dimeric product appeared to be made of both plus- and minus-strand RNA molecules. Experiments with 5' [32P]oligo(U) primer and all four unlabeled nucleotides suggest that the viral replicase elongates the primer, copying the poliovirion RNA template (plus strand), and the newly synthesized minus strand snaps back on itself to generate a template-primer structure which is elongated by the replicase to form covalently linked dimeric RNA molecules. Kinetic studies showed that a partially purified preparation of poliovirus replicase contains a nuclease which can cleave the covalently linked dimeric RNA molecules, generating template-length RNA products.  相似文献   

11.
Association of poly(A) polymerase with U1 RNA   总被引:3,自引:0,他引:3  
Previous studies (Stetler, D. A., and Jacob, S. T. (1984) J. Biol. Chem. 259, 7239-7244) have shown that poly(A) polymerase from adult rat liver (liver-type) is structurally and immunologically distinct from the corresponding rat hepatoma (tumor-type) enzyme. When hepatoma 7777 (McA-RH 7777) cells were labeled with [32P]inorganic phosphate, followed by immunoprecipitation with anti-hepatoma poly(A) polymerase antibodies and analysis of the RNAs in the immunoprecipitate, only one labeled small nuclear RNA corresponding to U1 RNA was found. Preimmune sera did not form a complex with U1 RNA. Hepatoma poly(A) polymerase antisera did not immunoprecipitate U1 RNA or any other small nuclear RNA from a cell line (H4-11-EC3) which does not contain the tumor-type poly(A) polymerase. Immunoblot analysis of hepatoma 7777 nuclear extract or purified poly(A) polymerase with anti-ribonucleoprotein antisera did not show any cross-reactivity of the latter sera with poly(A) polymerase. The major RNA immunoprecipitated from the hepatoma nuclear extracts using trimethyl cap (m3G) antisera corresponded to the RNA immunoprecipitated with poly(A) polymerase antisera. These data indicate that U1 RNA is closely associated with poly(A) polymerase and suggest the potential involvement of this RNA in the cleavage/polyadenylation of mRNA precursor.  相似文献   

12.
We reported previously that polycytidylate [poly(C)]-dependent RNA polymerase activity was a property of small spherical or triangular reovirus-specific particles which sedimented at 13 to 19S and were composed solely of the reovirus protein, sigma NS. Depending on the fraction of cellular extracts from which they were obtained, these particles exhibited marked differences in stability. Most 13 to 19S particles from a particular fraction repeatedly disaggregated into smaller 4 to 5S subunits with no enzymatic activity. Disruption of many particles could be prevented and polymerase activity retained after these particles had bound different single-stranded (ss) RNAs. Our previous results indicated that there was heterogeneity among the 13 to 19S particles in that possession of poly(C)-dependent RNA polymerase activity was a property of only some. Support for this heterogeneity was derived from the demonstration in this report that there were at least three types of binding sites present within particles in any purified preparation: (i) those binding only poly(C); (ii) those binding only reovirus ss RNAs; and (iii) those binding one or the other, but not both at the same time. It is suggested that only those particles able to bind either poly(C) or reovirus ss RNAs had poly(C)-dependent RNA polymerase activity, as reovirus ss RNAs markedly inhibited the polymerase activity. All three size classes of reovirus ss RNAs were equally effective in binding, but once bound, they were not copied. It is possible that heterogeneity in binding capacity of different particles comprised of only one protein, sigma NS, could result from the ability of subunits containing this protein to assemble into slightly different 13 to 19S particles with specificity of binding or polymerase activity conferred by the configuration of the assembled particles. The high capacity of sigma NS to bind many different nucleic acids with some specificity suggests that these particles may act during infection as condensing agents to bring together 10 reovirus ss RNA templates in preparation for double-stranded RNA synthesis.  相似文献   

13.
The poly(rC) binding protein (PCBP) is a cellular protein required for poliovirus replication. PCBP specifically interacts with two domains of the poliovirus 5' untranslated region (5'UTR), the 5' cloverleaf structure, and the stem-loop IV of the internal ribosome entry site (IRES). Using footprinting analysis and site-directed mutagenesis, we have mapped the RNA binding site for this cellular protein within the stem-loop IV domain. A C-rich sequence in a loop at the top of this large domain is required for PCBP binding and is crucial for viral translation. PCBP binds to stem-loop IV RNA with six-times-higher affinity than to the 5' cloverleaf structure. However, the binding of the viral protein 3CD (precursor of the viral protease 3C and the viral polymerase 3D) to the cloverleaf RNA dramatically increases the affinity of PCBP for this RNA element. The viral protein 3CD binds to the cloverleaf RNA but does not interact directly with stem-loop IV nor with other RNA elements of the viral IRES. Our results indicate that the interactions of PCBP with the poliovirus 5'UTR are modulated by the viral protein 3CD.  相似文献   

14.
Antibodies specific for N6-(delta 2-isopentenyl) adenosine (i6A) were immobilized on Sepharose and this adsorbent (Sepharose-anti-i6A) was used to selectively isolate bacteriophage T4 tRNA precursors containing i6A/ms2i6A from an unfractionated population of 32P-labeled T4 RNAs. The results showed that antibodies to i6A selectively bound only those tRNA precursors containing i6A/ms2i6A. Binding of tRNA precursors by antibody and specificity of the binding was assessed by membrane binding using 32P-labeled tRNA precursor. Binding was highly specific for i6A/ms2i6A residues in the tRNA precursors. This binding can be used to separate modified from unmodified precursor RNAs and to study the biosynthetic pathways of tRNA precursors.  相似文献   

15.
16.
The mechanism by which viral RNA-dependent RNA polymerases (RdRp) specifically amplify viral genomes is still unclear. In the case of flaviviruses, a model has been proposed that involves the recognition of an RNA element present at the viral 5' untranslated region, stem-loop A (SLA), that serves as a promoter for NS5 polymerase binding and activity. Here, we investigated requirements for specific promoter-dependent RNA synthesis of the dengue virus NS5 protein. Using mutated purified NS5 recombinant proteins and infectious viral RNAs, we analyzed the requirement of specific amino acids of the RdRp domain on polymerase activity and viral replication. A battery of 19 mutants was designed and analyzed. By measuring polymerase activity using nonspecific poly(rC) templates or specific viral RNA molecules, we identified four mutants with impaired polymerase activity. Viral full-length RNAs carrying these mutations were found to be unable to replicate in cell culture. Interestingly, one recombinant NS5 protein carrying the mutations K456A and K457A located in the F1 motif lacked RNA synthesis dependent on the SLA promoter but displayed high activity using a poly(rC) template. Promoter RNA binding of this NS5 mutant was unaffected while de novo RNA synthesis was abolished. Furthermore, the mutant maintained RNA elongation activity, indicating a role of the F1 region in promoter-dependent initiation. In addition, four NS5 mutants were selected to have polymerase activity in the recombinant protein but delayed or impaired virus replication when introduced into an infectious clone, suggesting a role of these amino acids in other functions of NS5. This work provides new molecular insights on the specific RNA synthesis activity of the dengue virus NS5 polymerase.  相似文献   

17.
Polyadenylation of mRNA has been shown to target the RNA molecule for rapid exonucleolytic degradation in bacteria. To elucidate the molecular mechanism governing this effect, we determined whether the Escherichia coli exoribonuclease polynucleotide phosphorylase (PNPase) preferably degrades polyadenylated RNA. When separately incubated with each molecule, isolated PNPase degraded polyadenylated and non-polyadenylated RNAs at similar rates. However, when the two molecules were mixed together, the polyadenylated RNA was degraded, whereas the non-polyadenylated RNA was stabilized. The same phenomenon was observed with polyuridinylated RNA. The poly(A) tail has to be located at the 3' end of the RNA, as the addition of several other nucleotides at the 3' end prevented competition for polyadenylated RNA. In RNA-binding experiments, E. coli PNPase bound to poly(A) and poly(U) sequences with much higher affinity than to poly(C) and poly(G). This high binding affinity defines poly(A) and poly(U) RNAs as preferential substrates for this enzyme. The high affinity of PNPase for polyadenylated RNA molecules may be part of the molecular mechanism by which polyadenylated RNA is preferentially degraded in bacterial cells.  相似文献   

18.
19.
The NS5B protein of the hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) (S.-E. Behrens, L. Tomei, and R. De Francesco, EMBO J. 15:12-22, 1996) that is assumed to be required for replication of the viral genome. To further study the biochemical and structural properties of this enzyme, an NS5B-hexahistidine fusion protein was expressed with recombinant baculoviruses in insect cells and purified to near homogeneity. The enzyme was found to have a primer-dependent RdRp activity that was able to copy a complete in vitro-transcribed HCV genome in the absence of additional viral or cellular factors. Filter binding assays and competition experiments showed that the purified enzyme binds RNA with no clear preference for HCV 3'-end sequences. Binding to homopolymeric RNAs was also examined, and the following order of specificity was observed: poly(U) > poly(G) > poly(A) > poly(C). An inverse order was found for the RdRp activity, which used poly(C) most efficiently as a template but was inactive on poly(U) and poly(G), suggesting that a high binding affinity between polymerase and template interferes with processivity. By using a mutational analysis, four amino acid sequence motifs crucial for RdRp activity were identified. While most substitutions of conserved residues within these motifs severely reduced the enzymatic activities, a single substitution in motif D which enhanced the RdRp activity by about 50% was found. Deletion studies indicate that amino acid residues at the very termini, in particular the amino terminus, are important for RdRp activity but not for RNA binding. Finally, we found a terminal transferase activity associated with the purified enzyme. However, this activity was also detected with NS5B proteins with an inactive RdRp, with an NS4B protein purified in the same way, and with wild-type baculovirus, suggesting that it is not an inherent activity of NS5B.  相似文献   

20.
A Molla  A V Paul    E Wimmer 《Journal of virology》1993,67(10):5932-5938
The translation and primary processing events of poliovirus polyproteins in HeLa cell extracts were more efficient at 34 degrees C than at 30 or 36 degrees C. The cleavage products of P2 such as 2Apro, 2BC, and 2C appeared early in the reaction before the appearance of the cleavage products of P1 and of 3CDpro, an observation suggesting that P2 was cleaved in cis by 3CDpro. Proteolytic processing of the capsid precursor P1 into VP0, VP1, and VP3 was also more efficient at 34 degrees C than at either 30 or 32 degrees C. Surprisingly, processing of 3CDpro to 3Cpro and 3Dpol was almost completely inhibited at 36 degrees C. The synthesis of virus in the cell extract was greatly enhanced at 34 degrees C over that at 30 or 32 degrees C, whereas incubation at 36 degrees C yielded very little virus. Cerulenin, an inhibitor of lipid synthesis, did not appear to affect virus-specific translation or protein processing, but it almost completely inhibited viral synthesis in vitro. Oleic acid drastically inhibited in vitro translation at 100 microM and in vitro poliovirus synthesis at 25 microM. Addition of HeLa cell smooth membranes partially restored translation but not virus formation. Our observations suggest that in vitro translation, proteolytic processing, and virus formation require intact membranes. Analysis of the in vitro translation products revealed that viral RNA polymerase activity increased linearly during incubation of the translation mixture. RNA polymerase in the crude mixture was inhibited by oleic acid but not by cerulenin. Surprisingly, oleic acid had no direct effect on oligo(U)-primed, poly(A)-dependent poly(U) synthesis catalyzed by purified 3Dpol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号