首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fang Y  Huang XJ  Chen PC  Xu ZK 《BMB reports》2011,44(2):87-95
Enzymatic catalysis has been pursued extensively in a wide range of important chemical processes for their unparalleled selectivity and mild reaction conditions. However, enzymes are usually costly and easy to inactivate in their free forms. Immobilization is the key to optimizing the in-service performance of an enzyme in industrial processes, particularly in the field of non-aqueous phase catalysis. Since the immobilization process for enzymes will inevitably result in some loss of activity, improving the activity retention of the immobilized enzyme is critical. To some extent, the performance of an immobilized enzyme is mainly governed by the supports used for immobilization, thus it is important to fully understand the properties of supporting materials and immobilization processes. In recent years, there has been growing concern in using polymeric materials as supports for their good mechanical and easily adjustable properties. Furthermore, a great many work has been done in order to improve the activity retention and stabilities of immobilized enzymes. Some introduce a spacer arm onto the support surface to improve the enzyme mobility. The support surface is also modified towards biocompatibility to reduce non-biospecific interactions between the enzyme and support. Besides, natural materials can be used directly as supporting materials owning to their inert and biocompatible properties. This review is focused on recent advances in using polymeric materials as hosts for lipase immobilization by two different methods, surface attachment and encapsulation. Polymeric materials of different forms, such as particles, membranes and nanofibers, are discussed in detail. The prospective applications of immobilized enzymes, especially the enzyme-immobilized membrane bioreactors (EMBR) are also discussed.  相似文献   

2.
Enzyme immobilization has attracted continuous attention in the fields of fine chemistry, biomedicine, and biosensor. The performance of immobilized enzyme largely depends on the structure of supports. Nanostructured supports are believed to be able to retain the catalytic activity as well as ensure the immobilization efficiency of enzyme to a high extent. Electrospinning provides a simple and versatile method to fabricate nanofibrous supports. Compared with other nanostructured supports (e.g. mesoporous silica, nanoparticles), nanofibrous supports show many advantages for their high porosity and interconnectivity. This review mainly discusses the recent advances in using nanofibers as hosts for enzyme immobilization by two different methods, surface attachment and encapsulation. Surface attachment refers to physical adsorption or covalent attachment of enzymes on pristine or modified nanofibrous supports, and encapsulation means electrospinning a mixture of enzyme and polymer. We make a detailed comparison between these two immobilization approaches and highlight their distinct characteristics. The prospective applications of enzyme immobilized electrospun nanofibers in the development of biosensors, biofuel cells and biocatalysts are also discussed.  相似文献   

3.
Enzyme immobilization: an update   总被引:1,自引:0,他引:1  
Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need for immobilization and different applications in industry, covering the last two decades. The most recent papers, patents, and reviews on immobilization strategies and application are reviewed.  相似文献   

4.
Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.  相似文献   

5.
Peroxidases from Pleurotus eryngii have been investigated for their ability to degrade recalcitrant, phenolic pollutants. The use of crude enzymatic extracts can reduce the high costs associated with enzyme purification, and enzyme immobilization can enhance enzyme stability and recovery. The present study tests the effectiveness of various conditions for crude enzyme stabilization in polyethylene glycol and glycine solutions, and immobilization on monofunctional and heterofunctional agarose solid supports. Glycine at 0.5 M at 4 °C and pH 4 was most effective stabilization agent for the crude enzymatic extracts, and enzyme immobilization efficiency was greatest for heterofunctional supports. MANA-glyoxyl heterofunctional supports were demonstrated to have the greatest enhancement of decolorization (1.3-fold) and velocity of substrate consumption (fivefold). Therefore, the application of crude enzymatic extracts to industrial processes, such as dye decolorization, represents a cost-effective alternative to purified enzymes.  相似文献   

6.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.  相似文献   

7.
Immobilization of enzymes and proteins on activated supports permits the simplification of the reactor design and may be used to improve some enzyme properties. In this sense, supports containing epoxy groups seem to be useful to generate very intense multipoint covalent attachment with different nucleophiles placed on the surface of enzyme molecules (e.g., amino, thiol, hydroxyl groups). However, the intermolecular reaction between epoxy groups and soluble enzymes is extremely slow. To solve this problem, we have designed "tailor-made" heterofunctional epoxy supports. Using these, immobilization of enzymes is performed via a two-step process: (i) an initial physical or chemical intermolecular interaction of the enzyme surface with the new functional groups introduced on the support surface and (ii) a subsequent intense intramolecular multipoint covalent reaction between the nucleophiles of the already immobilized enzyme and the epoxy groups of the supports. The first immobilization may involve different enzyme regions, which will be further rigidified by multipoint covalent attachment. The design of some heterofunctional epoxy supports and the performance of the immobilization protocols are described here. The whole protocol to have an immobilized and stabilized enzyme could take from 3 days to 1 week.  相似文献   

8.
The properties of a new and commercially available amino-epoxy support (amino-epoxy-Sepabeads) have been compared to conventional epoxy supports to immobilize enzymes, using the beta-galactosidase from Aspergillus oryzae as a model enzyme. The new support has a layer of epoxy groups over a layer of ethylenediamine that is covalently bound to the support. This support has both a great anionic exchanger strength and a high density of epoxy groups. Epoxy supports require the physical adsorption of the proteins onto the support before the covalent binding of the enzyme to the epoxy groups. Using conventional supports the immobilization rate is slow, because the adsorption is of hydrophobic nature, and immobilization must be performed using high ionic strength (over 0.5 M sodium phosphate) and a support with a fairly hydrophobic nature. Using the new support, immobilization may be performed at moderately low ionic strength, it occurs very rapidly, and it is not necessary to use a hydrophobic support. Therefore, this support should be specially recommended for immobilization of enzymes that cannot be submitted to high ionic strength. Also, both supports may be expected to yield different orientations of the proteins on the support, and that may result in some advantages in specific cases. For example, the model enzyme became almost fully inactivated when using the conventional support, while it exhibited an almost intact activity after immobilization on the new support. Furthermore, enzyme stability was significantly improved by the immobilization on this support (by more than a 12-fold factor), suggesting the promotion of some multipoint covalent attachment between the enzyme and the support (in fact the enzyme adsorbed on an equivalent cationic support without epoxy groups was even slightly less stable than the soluble enzyme).  相似文献   

9.
酶的本质是一种具有催化功能的蛋白质,能影响化学反应。然而,与传统的天然酶分子比较,固化酶相对更为脆弱,而传统的有机或无机催化剂其活性则比较固定。固化酶对于优化产业生产过程非常重要,近几十年来已开发出多种新型固化酶。本文在回顾酶固定化技术最新发展的同时。着重将其最新技术分别从吸附于载体,诱惑侦查及交联等三个方面进行综述。  相似文献   

10.
Fu J  Reinhold J  Woodbury NW 《PloS one》2011,6(4):e18692

Background

Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings

A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance

A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.  相似文献   

11.
Abstract

Enzymes are one of the foundations and regulators for all major biological activities in living bodies. Hence, enormous efforts have been made for enhancing the efficiency of enzymes under different conditions. The use of nanomaterials as novel carriers for enzyme delivery and regulating the activities of enzymes has stimulated significant interests in the field of nano-biotechnology for biomedical applications. Since, all types of nanoparticles (NPs) offer large surface to volume ratios, the use of NPs as enzyme carriers affect the structure, performance, loading efficiency, and the reaction kinetics of enzymes. Hence, the immobilization of enzymes on nanomatrices can be used as a useful approach for direct delivery of therapeutic enzymes to the targeted sites. In other words, NPs can be used as advanced enzyme delivery nanocarriers. In this paper, we present an overview of different binding of enzymes to the nanomaterials as well as different types of nanomatrix supports for immobilization of enzymes. Afterwards, the enzyme immobilization on nanomaterials as a potential system for enzyme delivery has been discussed. Finally, the challenges associated with the enzyme delivery using nano matrices and their future perspective have been discussed.

Communicated by Ramasamy H. Sarma  相似文献   

12.
Mutagenesis and immobilization are usually considered to be unrelated techniques with potential applications to improve protein properties. However, there are several reports showing that the use of site-directed mutagenesis to improve enzyme properties directly, but also how enzymes are immobilized on a support, can be a powerful tool to improve the properties of immobilized biomolecules for use as biosensors or biocatalysts. Standard immobilizations are not fully random processes, but the protein orientation may be difficult to alter. Initially, most efforts using this idea were addressed towards controlling the orientation of the enzyme on the immobilization support, in many cases to facilitate electron transfer from the support to the enzyme in redox biosensors. Usually, Cys residues are used to directly immobilize the protein on a support that contains disulfide groups or that is made from gold. There are also some examples using His in the target areas of the protein and using supports modified with immobilized metal chelates and other tags (e.g., using immobilized antibodies). Furthermore, site-directed mutagenesis to control immobilization is useful for improving the activity, the stability and even the selectivity of the immobilized protein, for example, via site-directed rigidification of selected areas of the protein. Initially, only Cys and disulfide supports were employed, but other supports with higher potential to give multipoint covalent attachment are being employed (e.g., glyoxyl or epoxy-disulfide supports). The advances in support design and the deeper knowledge of the mechanisms of enzyme-support interactions have permitted exploration of the possibilities of the coupled use of site-directed mutagenesis and immobilization in a new way. This paper intends to review some of the advances and possibilities that these coupled strategies permit.  相似文献   

13.
The controlled and partial modification of epoxy groups of Eupergit C and EP-Sepabeads with sodium sulfide has permitted the preparation of thiol-epoxy supports. Their use allowed not only the specific immobilization of enzymes through their thiol groups via thiol-disulfide interchange, but also enzyme stabilization via multipoint covalent attachment. Penicillin G acylase (PGA) from Escherichia coli and lipase from Rhizomucor miehei were used as model enzymes. Both enzymes lacked exposed cysteine residues, but were introduced via chemical modification under very mild conditions. In the first moments of the immobilization, a certain percentage of immobilized protein could be released from the support by incubation with DTT; this confirms that the first step was via a thiol-disulfide interchange. Moreover, the promotion of some further epoxy-enzyme bonds was confirmed because no enzyme release was detected after some immobilization time by incubation with DTT. In the case of the heterodimeric PGA, it was possible to demonstrate the formation of at least one epoxy bond per enzyme subunit by analyzing with SDS-PAGE the supernatants obtained after boiling the enzyme derivatives in the presence of mercaptoethanol and SDS. Thermal inactivation studies showed that these multipoint enzyme-support attachments promoted an increase in the stability of the immobilized enzymes. In both cases, the stabilization factor was around 12-15-fold comparing optimal derivatives with their just-thiol immobilized counterparts.  相似文献   

14.
The stabilization achieved by different immobilization protocols have been compared using three different enzymes (glutaryl acylase (GAC), D-aminoacid oxidase (DAAO), and glucose oxidase (GOX)): adsorption on aminated supports, treatment of this adsorbed enzymes with glutaraldehyde, and immobilization on glutaraldehyde pre-activated supports. In all cases, the treatment of adsorbed enzymes on amino-supports with glutaraldehyde yielded the higher stabilizations: in the case of GOX, a stabilization over 400-fold was achieved. After this treatment, the enzymes could no longer be desorbed from the supports using high ionic strength (suggesting the support-protein reaction). Modification of the enzymes immobilized on supports that did not offer the possibility of react with glutaraldehyde showed the same stability that the non modified preparations demonstrating that the mere chemical modification did not have effect on the enzyme stability. This simple strategy seems to permit very good results in terms of immobilization rate and stability, offering some advantages when compared to the immobilization on glutaraldehyde pre-activated supports.  相似文献   

15.
The paper deals with the pectolytic enzymes immobilization on different acrylic supports, and the application of immobilized preparations in the apple juice pectinization process. The correlation between the protein content (Cp) and specific catalytic activities of immobilized enyzme preparations suggest a specific immobilization process only in the case of PONILEX ASH type acrylic supports. The active immobilization degree on PONILEX ASH type supports of Ultrazym 100 G and technical pectinase extract ranged from 99.80 to 296.40% for the Pectinesterase (PE) activity, and from 101.85 to 252.94% for the chain splitting (CS) activity, proving that the ionic immobilization process is a selective one. The simulated operational stability of the immobilized pectolytic enzymes tested by the PE and CS activity values proves the preservation of enzyme catalytic activity.  相似文献   

16.
The enzyme penicillin G acylase (PGA) is not adsorbed at pH 7 on DEAE- or PEI-coated supports, neither is it adsorbed on carboxymethyl (CM)- or dextran sulfate (DS)-coated supports. The surface of the enzyme was chemically modified under controlled conditions: chemical amination of the protein surface of carboxylic groups (using soluble carbodiimide and ethylendiamine) and chemical succinylation (using succinic anhydride) of amino groups. The full chemical modification produced some negative effects on enzyme stability and activity, although partial modification (mainly succinylation) presented negligible effects on both enzyme features. The chemical amination of the protein surface permitted the immobilization of the enzyme on CM- and DS-coated support, while the chemical succinylation permitted the enzyme immobilization on DEAE- and PEI-coated supports. Immobilization was very strong on these supports, mainly in the polymeric ones, and dependent on the degree of modification, although the enzymes still can be desorbed after inactivation by incubation under drastic conditions. Moreover, the immobilization on ionic polymeric beds allowed a significant increase in enzyme stability against the inactivation and inhibitory effects of organic solvents, very likely by the promotion of a certain partition of the organic solvent out of the enzyme environment. These results suggest that the enrichment of the surface of proteins with ionic groups may be a good strategy to take advantage of the immobilization of industrial enzymes via ionic exchange on ionic polymeric beds.  相似文献   

17.
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process.Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.  相似文献   

18.
The arrangement and type of support has a significant impact on the efficiency of immobilized enzymes. 1-dimensional fibrous materials can be one of the most desirable supports for enzyme immobilization. This is due to their high surface area to volume ratio, internal porosity, ease of handling, and high mechanical stability, all of which allow a higher enzyme loading, release and finally lead to better catalytic efficiency. Fortunately, the enzymes can reside inside individual nanofibers to remain encapsulated and retain their three-dimensional structure. These properties can protect the enzyme's tolerance against harsh conditions such as pH variations and high temperature, and this can probably enhance the enzyme's stability. This review article will discuss the immobilization of enzymes on synthetic polymers, which are fabricated into nanofibers by electrospinning. This technique is rapidly gaining popularity as one of the most practical ways to fibricate polymer, metal oxide, and composite micro or nanofibers. As a result, there is interest in using nanofibers to immobilize enzymes. Furthermore, present research on electrospun nanofibers for enzyme immobilization is primarily limited to the lab scale and industrial scale is still challanging. The primary future research objectives of this paper is to investigate the use of electrospun nanofibers for enzyme immobilization, which includes increasing yield to transfer biological products into commercial applications.  相似文献   

19.
Microbial enzymes for oxidation of organic molecules   总被引:10,自引:0,他引:10  
Enzymatic systems employed by microorganisms for oxidative transformation of various organic molecules include laccases, ligninases, tyrosinases, monooxygenases, and dioxygenases. Reactions performed by these enzymes play a significant role in maintaining the global carbon cycle through either transformation or complete mineralization of organic molecules. Additionally, oxidative enzymes are instrumental in modification or degradation of the ever-increasing man-made chemicals constantly released into our environment. Due to their inherent stereo- and regioselectivity and high efficiency, oxidative enzymes have attracted attention as potential biocatalysts for various biotechnological processes. Successful commercial application of these enzymes will be possible through employing new methodologies, such as use of organic solvents in the reaction mixtures, immobilization of either the intact microorganisms or isolated enzyme preparations on various supports, and genetic engineering technology.  相似文献   

20.
酶的本质是一种具有催化功能的蛋白质,能影响化学反应。然而,与传统的天然酶分子比较,固化酶相对更为脆弱,而传统的有机或无机催化剂其活性则比较固定。固化酶对于优化产业生产过程非常重要,近几十年来已开发出多种新型固化酶。本文在回顾酶固定化技术最新发展的同时。着重将其最新技术分别从吸附于载体,诱惑侦查及交联等三个方面进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号