首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red blood cells were isolated from rat blood and incubated in the presence of [3H]arachidonate. A sizeable quantity (18%) of the radioactivity was incorporated into red cell lipids, of which phosphatidylcholine was the most highly labelled. Radioactive arachidonate was found at position 2 of this phospholipid. Free fatty acids were removed by washing the cells in solutions containing fatty-acid-free bovine serum albumin. The labelled red cells were then incubated for up to 16 h at 37 degrees C. After 16 h of incubation in saline-buffer-glucose or rat serum, 20 and 26%, respectively, of the total radioactivity was found in free fatty acids, and there were corresponding declines in the percentage radioactivities found in phosphatidylcholine. In the presence of serum, there was a more rapid release of radioactive fatty acid over the 2- to 16-h time course. There was not a significant drop in the phosphate levels of the total red cell phospholipids or phosphatidylcholine after 16 h of incubation and, as a result, there were large declines in the specific radioactivities of phosphatidylcholine. Diacylglycerols were not highly labelled and the action of phospholipase A2 on labelled phosphatidylcholine was indicated. When white blood cells were added to labelled red cells, there was little evidence of white cell involvement in the release of radioactive fatty acid, suggesting that the red cells themselves may be involved in arachidonate release. Red cells may serve as sources of arachidonate, released following hemorrhage in brain and metabolized to form various biologically active eicosanoids.  相似文献   

2.
The mass of total arachidonate released from phospholipids upon agonist stimulation of the cell and the fraction of released arachidonate which is converted to icosanoids are two parameters of arachidonate metabolism which have been difficult to quantitate because the mass of arachidonate released upon cell stimulation is very low. We have been able to quantitate both of these parameters under a variety of experimental conditions using a unique essential fatty acid-deficient mouse fibrosarcoma cell line (EFD-1), which when repleted with arachidonate, produces prostaglandin E2 (PGE2). Because there is no endogenous pool of arachidonate in these cells, the specific activity of exogenous arachidonate does not change upon incorporation into cells, an advantage which permits mass determination of very small quantities of arachidonate directly from radioactive counts. EFD-1 cells were incubated with various concentrations of [14C]arachidonate (for release studies) or unlabeled arachidonate (for PGE2 radioimmunoassays) for 24 h and then stimulated with bradykinin. The time courses for arachidonate release and PGE2 production demonstrated that free arachidonate was rapidly converted to PGE2 with plateau levels attained for both parameters within 240 s of agonist exposure for 2 microM and for 10 microM arachidonate-repleted cultures. There was a linear relationship (r = 0.94) between the mass of arachidonate in the cell and the mass of arachidonate released upon stimulation, up to a cellular concentration of 11 nmol of arachidonate/10(6) cells, a concentration 10-20% above normal for the parent mouse fibrosarcoma cell line (HSDM1C1) which is not essential fatty acid-deficient. Importantly, the percent of released arachidonate which was converted to PGE2 decreased from 90 to 15% with increasing concentrations of cellular arachidonate, because PGE2 production plateaued at greater than or equal to 6 nmol of arachidonate/10(6) cells, but total arachidonate release continued to rise. Finally, we demonstrated that agonist stimulation with thrombin, A23187, and bradykinin all showed the same percent conversion of released arachidonate to PGE2, implying that the determination of this fraction is not a function of the mechanism of release. These studies with our unique cell line indicate that, when the concentration of arachidonate in the cell is not elevated above amounts normally found in our HSDM1C1 cell line, released arachidonate is rapidly and almost quantitatively converted to PGE2, independent of the agonist used to stimulate the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effects on red blood cells of superoxide dismutase (Cu,ZnSOD) depletion, induced by feeding Wistar rats with a copper deficient diet, were investigated. SOD depleted red blood cells were more sensitive to peroxidation and to hemolysis than normal cells when exposed to tert-butylhydroperoxide (t-BOOH). Membranes isolated from SOD depleted cells showed a lower content of vitamin E and higher (Na+, K+) and Mg2+ ATPase activities. These results support the view that superoxide dismutase plays an important role in cellular oxidative metabolism.  相似文献   

4.
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.  相似文献   

5.
In order to physically separate epithelial from nonepithelial cells, well-minced rat ventral prostate at 2 degrees C was passed through a tissue sieve, and the disrupted tissue suspended and washed several times before centrifugation on a Ficoll gradient. While limited separation of single prostate epithelial and nonepithelial cells and small aggregates could be achieved, the yield of intact undamaged cells was low, and many nuclei contaminated the 2 major cell fractions obtained from the gradient. During subsequent experiments, it became apparent that most single cells released from prostates minced at 2 degrees C rapidly lysed, yielding cytoplasmic debris and cell nuclei. Yet the morphology of red and white blood cells, examined by light microscopy, was unaffected, suggesting a soluble factor was not responsible. These results indicated that mechanical dissociation of rat ventral prostate at 2 degrees C with release of single cells was accompanied by a powerful prostate cell-associated lytic 'event', affecting both epithelial and connective tissue cells, without destruction of cell nuclei or accompanying red and white blood cells. Some properties of this process are described in this report.  相似文献   

6.
When icosanoid-producing cells are stimulated by an agonist, 2-10% of total cellular arachidonate is released from phospholipids, and a variable percentage of the released arachidonate is subsequently converted into icosanoids. We used a mouse fibrosarcoma cell line (HSDM1C1) which synthesizes prostaglandin E2 in response to bradykinin stimulation to address the following questions: 1) upon cell stimulation is newly incorporated arachidonate preferentially released from phospholipids over previously incorporated arachidonate and 2) is there a corresponding change in phospholipid or membrane compartmentation of arachidonate to explain preferential release of newly incorporated arachidonate? To study changes in the availability of arachidonate for release from phospholipids, we incubated HSDM1C1 cells with 0.67 microM [14C]arachidonate for 15 min and chased the pulse of radiolabeled arachidonate with normal serum fatty acids. We found that of the [14C]arachidonate incorporated into phospholipids during the 15-min pulse, the percent released upon stimulation decreased nearly 3-fold from 8.9 +/- 0.5% at 5 min of chase to 3.6 +/- 0.2% (mean +/- S.E., n = 6, P less than 0.001) after only 60 min of chase. Percent release of arachidonate from nonpulsed controls was 3-4%. Although arachidonate release from phospholipids decreased significantly after 60 min of chase, the arachidonate which was released always originated predominantly from phosphatidylinositol. There was no decrease in the activities of enzymes required for arachidonate release during this time period. We also observed that throughout the period of the chase, the radiolabeled arachidonate remained esterified to the same phospholipid class into which it was initially incorporated (approximately 40% of [14C]arachidonate in diacyl phosphatidylcholine, 40% in phosphatidylinositol, and 15% in diacyl phosphatidylethanolamine. In cell fractionation experiments, we found that after 1-3 h of chase, [14C]arachidonate decreased in subcellular fractions containing nuclei, as it became progressively unavailable for release from phospholipids. Thus, our results indicate that 1) upon cell stimulation, the most recently incorporated pool of arachidonate, which is in high concentration in the nuclear membrane, is preferentially released and that 2) arachidonate rapidly moves out of the nuclear membrane into a less releasable pool while remaining esterified to the phospholipid moiety into which it was initially incorporated. This study indicates that the subcellular compartmentation of arachidonate has a marked influence on the cellular metabolism of arachidonate.  相似文献   

7.
Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitro-en decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230, 000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

8.
The sequestration of Ca2+ by mitochondria in rat heart cells   总被引:1,自引:0,他引:1  
P Kessar  M Crompton 《Cell calcium》1983,4(4):295-305
Rat heart ventricular cells, purified by Percoll density gradient centrifugation, were incubated in the presence of 1.3 mM CaCl2. After 20 min incubation, samples of the cells were lysed in medium containing 0.3 mM digitonin, ruthenium red and EGTA, and a mitochondrial fraction was isolated at intervals thereafter. Extrapolation of the mitochondrial 45Ca2+ contents to zero time enabled the endogenous 45Ca2+ to be estimated at the time of cell lysis. The lysis conditions yielded essentially complete release of lactate dehydrogenase from the cells, but caused negligible damage to the mitochondria as judged by their retention of glutamate dehydrogenase, and their ability to accumulate and retain Ca2+ in the absence of ruthenium red and EGTA. The data indicate that about 13% of total cell Ca2+ only may be mitochondrial in vivo.  相似文献   

9.
Gastric epithelial cells liberate prostaglandin E(2) in response to cytokines as part of the process of healing of gastric lesions. Treatment of the rat gastric epithelial cell line RGM1 with transforming growth factor-alpha and interleukin-1beta leads to synergistic release of arachidonate and production of prostaglandin E(2). Results with highly specific and potent phospholipase A(2) inhibitors and with small interfering RNA show that cytosolic phospholipase A(2)-alpha and group IIA secreted phospholipase A(2) contribute to arachidonate release from cytokine-stimulated RGM1 cells. In the late phase of arachidonate release, group IIA secreted phospholipase A(2) is induced (detected at the mRNA and protein levels), and the action of cytosolic phospholipase A(2)-alpha is required for this induction. Results with RGM1 cells and group IIA secreted phospholipase A(2)-transfected HEK293 cells show that the group IIA phospholipase acts prior to externalization from the cells. RGM1 cells also express group XIIA secreted phospholipase A(2), but this enzyme is not regulated by cytokines nor does it contribute to arachidonate release. The other eight secreted phospholipases A(2) were not detected in RGM1 cells at the mRNA level. These results clearly show that cytosolic and group IIA secreted phospholipases A(2) work together to liberate arachidonate from RGM1 cell phospholipids in response to cytokines.  相似文献   

10.
G protein regulation of phospholipase A2   总被引:1,自引:0,他引:1  
Many neurotransmitters and hormones activate receptors that are known to be coupled to their effectors by GTP-binding regulatory proteins, G proteins. Activation of many of these same receptors elicits arachidonate release and metabolism. During the past few years, novel experimental techniques have revealed that in many cells arachidonate release is independent of generation of other second messengers, including inositol phosphates, diacylglycerols, and elevation in free intracellular calcium. Much evidence has accumulated to implicate phospholipase A2 as the enzyme catalyzing arachidonate release, and suggesting that this effector enzyme, too, is activated by G proteins. In neural tissues as well as epithelium, endothelium, contractile and connective tissues, and blood cells, G proteins coupled to receptors for a variety of peptide and nonpeptide neurotransmitters and hormones have been shown to directly activate phospholipase A2. In retinal rod outer segments, transducin is the coupling G protein, but the G proteins coupling receptor activation to phospholipase A2 in other cell types is less clear. Some are pertussis toxin-sensitive, whereas others are not, and evidence exists that the ras gene product G protein may also be coupled to and regulate phospholipase A2.  相似文献   

11.
To elucidate the cytotoxic mechanism of tumor necrosis factor (TNF), we isolated TNF-resistant sublines of L929 cells. As compared with L929 cells, TNF-resistant cells retained similar number and affinity of TNF-binding sites, and showed a similar growth rate. TNF stimulated arachidonate release from L929 cells, while no stimulation was observed at all in TNF-resistant cells tested. The cytotoxic action of TNF on L929 cells was inhibited by indomethacin, suggesting that prostaglandin may be involved in the action. Therefore, TNF-stimulated prostaglandin production was examined in L929 and TNF-resistant sublines. The amount of PGE2 produced by L929 cells was increased more than 5-fold after the addition of TNF, whereas the amount of PGE2 did not change in the resistant sublines following addition of the factor. TNF-stimulated arachidonate release and PGE2 production were reversed by islet-activating protein (IAP)-treatment of L929 cells. These results suggest that arachidonate release and subsequent prostaglandin production are important for the cytotoxic action of TNF and that these processes are mediated by GTP-binding protein (G protein) that is coupled to the TNF-receptor.  相似文献   

12.
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.  相似文献   

13.
Density gradient centrifugation usually allows efficient separation of mononuclear cells from granulocytes using fresh human blood samples. However, we have found that with cryopreserved blood samples, density gradient centrifugation fails to separate granulocytes from mononuclear cells and have explored using immunomagnetic anti-CD15 microbeads as an alternate method to separate these cell populations. Using cryopreserved blood samples from 10 healthy donors we have shown that granulocytes express a significantly higher level of CD15 antigen than monocytes and lymphocytes, which allows for their efficient separation from mononuclear cells using anti-CD15 microbeads. This procedure is critical for purification of individual cell populations from cryopreserved leukocyte samples and could also potentially be applied to avoid granulocyte contamination of mononuclear cells isolated from stored blood and from patients with sepsis or thermal injury.  相似文献   

14.
The processes of O2 uptake and release by the three embryonic haemoglobins contained within early mouse embryonic red blood cells have been studied using dual-wavelength stopped-flow kinetic spectroscopy. The rate of O2 uptake in the pseudo-spherical, nucleated, embryonic red blood cells exhibits a greater than first-order dependence on O2 concentration. The time courses for the release from the red blood cells into dithionite-containing solutions tends towards a limiting rate at high dithionite concentrations. The rates of both the uptake and release processes observed in the embryonic cells are compared with those previously seen for adult mouse red blood cells. A new mathematical model is described which accurately simulates both uptake and release experimental data for the nucleated embryonic red blood cells.  相似文献   

15.
Peter Mazur 《Cryobiology》2010,61(3):366-367
Density gradient centrifugation usually allows efficient separation of mononuclear cells from granulocytes using fresh human blood samples. However, we have found that with cryopreserved blood samples, density gradient centrifugation fails to separate granulocytes from mononuclear cells and have explored using immunomagnetic anti-CD15 microbeads as an alternate method to separate these cell populations. Using cryopreserved blood samples from 10 healthy donors we have shown that granulocytes express a significantly higher level of CD15 antigen than monocytes and lymphocytes, which allows for their efficient separation from mononuclear cells using anti-CD15 microbeads. This procedure is critical for purification of individual cell populations from cryopreserved leukocyte samples and could also potentially be applied to avoid granulocyte contamination of mononuclear cells isolated from stored blood and from patients with sepsis or thermal injury.  相似文献   

16.
We have demonstrated that the uptake and agonist-induced release of a pulse of arachidonate are influenced by the size and composition of preexisting endogenous fatty acid pools. EFD-1 cells, an essential fatty acid-deficient mouse fibrosarcoma cell line, were incubated with radiolabeled (14C or 3H] arachidonate, linoleate, eicosapentaenoate (EPA), palmitate, or oleate in concentrations of 0-33 microM for 24 h. After 24 h, the cells were pulsed with 0.67 microM radiolabeled (3H or 14C, opposite first label) arachidonate for 15 min and then stimulated with 10 microM bradykinin for 4 min. Because EFD-1 cells contain no endogenous essential fatty acids, we were able to create essential fatty acid-repleted cells for which the specific activity of the newly constructed endogenous essential fatty acid pool was known. Loading the endogenous pool with the essential fatty acids arachidonate, eicosapentaenoate, or linoleate (15-20 nmol of fatty acid incorporated/10(6) cells) decreased the uptake of a pulse of arachidonate from 200 to 100 pmol/10(6) cells but had no effect on palmitate uptake. The percent of arachidonate incorporated during the pulse which was released upon agonist stimulation increased 2-fold (4-8%) as the endogenous pool of essential fatty acids was increased from 0 to 15-20 nmol/10(6) cells. This 8% release was at least 3-fold greater than the percent release from the various endogenous essential fatty acid pools. In contrast, loading the endogenous pool with the nonessential fatty acids oleate or palmitate to more than 2-3 times their preexisting cellular level had no effect on the uptake of an arachidonate pulse. Like the essential fatty acids, increasing endogenous oleate increased (by 2-fold) the percent release of arachidonate incorporated during the pulse, whereas endogenous palmitate had no effect on subsequent agonist-induced release from this arachidonate pool. These studies show that preexisting pools of essential and nonessential fatty acids exert different effects on the uptake and subsequent releasability of a pulse of arachidonate.  相似文献   

17.
The effect of (R,R,R)-alpha-tocopherol on agonist-stimulated arachidonate release and cellular lipids was investigated in cultured human umbilical cord endothelial cells. Endothelial cells in culture incorporate added tocopherol in a dose-dependent manner at both physiological (23.2 microM) or pharmacological (92.8 microM) concentrations which were well tolerated by the cells, as judged by unaltered cell number and viability. Two experiments were conducted in which cells were either incubated with (R,R,R)-alpha-tocopherol followed by labelling with [1-14C]arachidonic acid or they were labelled with arachidonate followed by incubation with tocopherol. Irrespective of the sequence of incubation with arachidonate and tocopherol, (R,R,R)-alpha-tocopherol-enriched cells released significantly more labelled arachidonate when stimulated with thrombin (2.5 U/ml) or ionophore A23187 (1 microM) for 10 min. The magnitude of [1-14C]arachidonate release was higher from ionophore A23187 stimulation than from thrombin stimulation, but the trend of increased arachidonate release in tocopherol-enriched cells was the same. Results from these studies demonstrate that (R,R,R)-alpha-tocopherol can stimulate arachidonate release in human endothelial cells. This observation is in direct contrast to the role of tocopherol, which has been shown to inhibit platelet and cardiac phospholipase A2 activity in rats, and to reduce thrombin-stimulated thromboxane release in rat platelets.  相似文献   

18.
The molecular mechanisms of laser-induced changes in the cell structure and function are not well known. The authors examined the effects of low-power laser irradiation on unnucleated pig blood platelets. The obtained results showed that laser irradiation (1–5J) caused in blood platelets lipid peroxidation (measured as thiobarbituric acid reactive substances) and super-oxide anion generation, concomitant with the release of adenine nucleotides and proteins from platelets. The maximum platelet response to laser irradiation was observed when doses of 1.8–2J were used. Our results indicate that red laser irradiation induces: (1) platelet secretory process and the release of substances stored in the specific granules (adenine nucleotides, proteins); and (2) lipid peroxidation partly due to stimulation of endogenous arachidonate and production of its metabolites reacting with thiobarbituric acid.  相似文献   

19.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
SYNOPSIS. Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitrogen decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230,000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号