首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Partial sequencing of the 18S ribosomal RNA in nine parasitic and one free-living species of platyhelminth was used to test hypotheses on the phylogenetic relationships among the major groups. The eucestodes, amphilinideans, gyrocotylideans and monopisthocotylideans appeared as a monophyletic assemblage in a cladistic analysis of the data, with a very close association between the gyrocotylideans and monopisthocotylideans. The polyopisthocotylidean monogeneans were paraphyletic to the monopisthocotylideans. The digeneans appeared to be a sister group to the monogeneans and eucestodes, while the temnocephalidean was closely related to the free-living polyclad.  相似文献   

3.
Chan ER  Hester J  Kalady M  Xiao H  Li X  Serre D 《Genomics》2011,98(4):253-259
Deep sequencing of the 16S rRNA gene provides a comprehensive view of bacterial communities in a particular environment and has expanded our ability to study the impact of the microflora on human health and disease. Current analysis methods rely on comparisons of the sequences generated with an expanding but limited set of annotated 16S rRNA sequences or phylogenic clustering of sequences based on arbitrary similarity cutoffs. We describe a novel approach to characterize bacterial composition using deep sequencing of 16S rRNA gene. Our method defines operational taxonomic units based on phylogenetic tree reconstruction and dynamic clustering of sequences using solely sequencing data. These OTUs can be used to identify differences in bacteria abundance between environments. This approach can perform better than previous phylogenetic methods and will significantly improve our understanding of the microfloral role on human diseases by providing a comprehensive analysis of the microbial composition from various bacterial communities.  相似文献   

4.
Ribosomal RNA sequences are an appealing target for bacterial classification as well as for development of group- or species-specific DNA probes. Using the polymerase chain reaction and synthetic primers, the feasibility of this gene amplification technique for rapid sequence determination of the major 16S ribosomal RNA domains from small amounts of input DNA is demonstrated. Information useful for phylogenetic classification as well as for construction of specific DNA probes may be obtained by comparison with known sequences.  相似文献   

5.
6.
Synopsis Approximately 98% of the sequence of the 18S ribosomal RNA (rRNA) of the coelacanth Latimeria chalumnae was determined by a combination of direct RNA sequencing and sequencing of rRNA genes amplified by the polymerase chain reaction. This sequence was compared with 18S rRNA sequences of similar length from seven other vertebrate species, representing the taxa Petromyzontiformes, Holocephali, Elasmobranchii, Actinopterygii, Dipnoi, Amphibia, and Amniota, in order to determine the most likely sister group of the coelacanth. Maximum parsimony analysis of these sequences resulted in a single most parsimonious tree containing a number of anomalous relationships among these groups. A bootstrap analysis showed that none of the relationships in this tree was significantly supported at the 95% level, however. Addition of data from 15 other vertebrates (providing multiple representatives of most of the higher taxa) resulted in similar ambiguous groupings, as did a number of methods of editing the sites compared (designed to eliminate rapidly evolving positions). These results may be due to a relatively rapid radiation of the major lineages of osteichthyans, the resolution of which will require molecular information from a larger portion of the coelacanth genome.  相似文献   

7.
Fan-shaped, naked amoebae are commonly encountered in samples from freshwater and marine habitats suggesting that they are an important component of the microbial food web. However, there are considerable problems in both detecting these amoebae and identifying them, given their morphological similarity. In this study we used restriction analysis and partial sequence analysis of the small-subunit 18S ribosomal RNA gene to examine the phylogenetic relationships between nine "fan-shaped" Vannella and Platyamoeba species. The molecular phylogeny showed that the marine Vannella and Platyamoeba isolates are closely related, whereas the freshwater isolates are disparate. Thus, the current reliance on the fine structure of the cell coat (glycocalyx) used to separate these genera is not justified. The study also highlights sequence elements that might be targeted by fluorescent probes for the direct detection of these amoebae in field samples. The molecular data were also used to aid the identification of three unknown fan-shaped isolates. All three unknowns resembled Vannella or Platyamoeba. However, one of the strains (a small < 10 microm, benthic, fan-shaped amoeba) probably represents a new genus.  相似文献   

8.
Summary The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellateProrocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5 end, as judged by agarose gel electrophoresis and primer extension experiments.Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.  相似文献   

9.
16S ribosomal RNAs (rRNA) of 12 methylotrophic bacteria have been almost completely sequenced to establish their phylogenetic relationships. Methylotrophs that are physiologically related are phylogenetically diverse and are scattered among the purple eubacteria (class Proteobacteria). Group I methylotrophs can be classified in the beta- and the gamma-subdivisions and group II methylotrophs in the alpha-subdivision of the purple eubacteria, respectively. Pink-pigmented facultative and non-pigmented obligate group II methylotrophs form two distinctly separate branches within the alpha-subdivision. The secondary structures of the 16S rRNA sequences of 'Methylocystis parvus' strain OBBP, 'Methylosinus trichosporium' strain OB3b, 'Methylosporovibrio methanica' strain 81Z and Hyphomicrobium sp. strain DM2 are similar, and these non-pigmented obligate group II methylotrophs form one tight cluster in the alpha-subdivision. The pink-pigmented facultative methylotrophs, Methylobacterium extorquens strain AM1, Methylobacterium sp. strain DM4 and Methylobacterium organophilum strain XX form another cluster within the alpha-subdivision. Although similar in phenotypic characteristics, Methylobacterium organophilum strain XX and Methylobacterium extorquens strain AM1 are clearly distinguishable by their 16S rRNA sequences. The group I methylotrophs, Methylophilus methylotrophus strain AS1 and methylotrophic species DM11, which do not utilize methane, are similar in 16S rRNA sequence to bacteria in the beta-subdivision. The methane-utilizing, obligate group I methanotrophs, Methylococcus capsulatus strain BATH and Methylomonas methanica, are placed in the gamma-subdivision. The results demonstrate that it is possible to distinguish and classify the methylotrophic bacteria using 16S rRNA sequence analysis.  相似文献   

10.
11.
A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.  相似文献   

12.
13.
Partial 16S rRNA gene sequence comparisons have been used to determine the phylogenetic placement of the Elbe River isolate RW1, the first described bacterium capable of complete mineralization of dibenzo- p -dioxin. Sequence similarities, cluster analysis and signature positions demonstrate that RW1 groups with other species of Sphingomonas as a distinct, new species of this genus.  相似文献   

14.
15.
16.
In the present study the whole bacterial community structure of Tapovan hot spring soil located in the state of Uttarakhand, India was analysed through next generation sequencing. The hot spring soil is slightly alkaline in nature with abundance of sulphur. The spring soil was rich in various metallic and non-metallic elements required for bacterial survival. The community was found to comprise of 14 bacterial phyla with representation of members belonging to Firmicutes, Proteobacteria, Thermi, Bacteroidetes, Aquificae, Actinobacteria, chloroflexi, TM7, Fusobacteria etc. At the genus level Bacillus, Pseudomonas, Symbiobacterium, Thermus, Geobacillus, Anoxybacillus were found in abundance as compared to other genera like Flavobacterium, Ureibacillus, Clostridium, Meiothermus, Acinetobacter, Desulfotomaculum and Rheinheimera.  相似文献   

17.
18.
Genera, families, and possibly orders of basidiomycetous yeasts can be defined by 25S rRNA homology and correlated phenotypic characters. The teleomorphic genera Filobasidium, Leucosporidium, and Rhodosporidium have greater than 96 relative binding percent (rb%) intrageneric 25S rRNA homology and significant intergeneric separation from each other and from Filobasidiella. The anamorphic genus Cryptococcus can be defined by morphology (monopolar budding), colony color, and greater than 75 rb% intrageneric homology; Vanrija is heterogeneous. Agaricostilbum (Phragmobasidiomycetes, Auriculariales), Hansenula (Ascomycotera, Endomycota), Tremella (Phragmobasidiomycetes, Tremellales), and Ustilago (Ustomycota, Ustilaginales) appear equally unrelated to the Cryptococcus, Filobasidiella, and Rhodosporidium spp. used as probes. The Filobasidiaceae and Sporidiaceae, Filobasidiales and Sporidiales, form coherent homology groups which appear to have undergone convergent 25S rRNA evolution, since their relatedness is much greater than that indicated by 5S rRNA homology. Ribosomal RNA homologies do not appear to measure evolutionary distance.  相似文献   

19.
5S ribosomal RNA sequences of 33 strains of methylotrophic bacteria were determined. Tentative phylogenetic tree was constructed using the maximum topological similarity principle. Strains under study can be divided into 7 separate branches consistently with the current classification of methylotrophic bacteria. More extensive tree was also built to show the position of methylotrophic bacteria with respect to non-methylotrophic ones. One can conclude that the in contrast to obligate methane-oxidizing bacteria, facultative methylotrophic bacteria do not comprise phylogenetically separate domain on the tree.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号