首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
Among the goals of gene therapy is long-term expression of delivered transgenes. Recombinant Tag-deleted SV40 vectors (rSV40s) are especially well suited for this purpose. rSV40s deliver transgene expression that endures for extended periods of time in tissue culture and in vivo, in both dividing and nondividing cells. These vectors are particularly effective in transducing some cell types that have been almost unapproachable using other gene delivery systems, such as quiescent hematopoietic progenitor cells and their differentiated derivatives. Other cellular targets include neurons, brain microglia, hepatocytes, dendritic cells, vascular endothelium, and others. Because rSV40s do not elicit neutralizing antibodies they are useful for in vivo gene delivery in settings where more than one administration may be desirable. The key characteristics of these vectors include their high production titers and therefore suitability for large cell pools, effectiveness in delivering intracellular proteins, and untranslated RNAs, maintenance of transgene expression at constant levels for extended times, suitability for constitutive or conditional promoters and for combinatorial gene delivery and ability to integrate into genomes of both dividing and nondividing cells.  相似文献   

2.
Liposome-mediated gene therapy in the kidney   总被引:1,自引:0,他引:1  
Gene therapy directed to the kidney has been attempted to improve renal disorders such as inherited kidney diseases and common renal diseases that cause interstitial fibrosis, tubular atrophy, and glomerulosclerosis. Viral and non-viral vectors have been tried and been modulated to obtain sufficient transgene expression. However, gene delivery to the kidney is usually difficult because of characteristics of renal cell biology. Among non-viral vectors, the liposome system is a promising procedure for kidney-targeted gene therapy. Using cationic liposome, tubular cells were effectively transduced by retrograde injection of liposome/cDNA complex. Although transgene expression was reportedly modest using cationic liposomes, this method improved renal disease models such as carbonic anhydrase II deficiency and unilateral ureteral obstruction. In contrast, HVJ-liposome system is an effective transfection method to glomerular cells using intra-renal arterial infusion and improved glomerular disease models such as glomerulonephritis and glomerulosclerosis. In addition, intra-renal pelvic injection of DNA by HVJ-liposome system showed transgene expression in interstitial fibroblasts. In kidney-targeted gene therapy, liposome-mediated gene transfer is an attractive method because of its simplicity and reduced toxicity. In spite of modest transgene expression, several renal disease models were successfully modulated by liposome system. Although one limitation of liposome-mediated gene delivery is the duration of transgene expression, the liposome/cDNA complex can be repeatedly administered due to the absence of an immune response.  相似文献   

3.
Low‐level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR‐6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR‐6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP‐B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP‐B, DHFR intron MAR element and MAR‐6. Additionally, as expected, the three MAR‐containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non‐MAR‐containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP‐B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.  相似文献   

4.
Gene therapy directed to the kidney has been attempted to improve renal disorders such as inherited kidney diseases and common renal diseases that cause interstitial fibrosis, tubular atrophy, and glomerulosclerosis. Viral and non-viral vectors have been tried and been modulated to obtain sufficient transgene expression. However, gene delivery to the kidney is usually difficult because of characteristics of renal cell biology. Among non-viral vectors, the liposome system is a promising procedure for kidney-targeted gene therapy. Using cationic liposome, tubular cells were effectively transduced by retrograde injection of liposome/cDNA complex. Although transgene expression was reportedly modest using cationic liposomes, this method improved renal disease models such as carbonic anhydrase II deficiency and unilateral ureteral obstruction. In contrast, HVJ-liposome system is an effective transfection method to glomerular cells using intra-renal arterial infusion and improved glomerular disease models such as glomerulonephritis and glomerulosclerosis. In addition, intra-renal pelvic injection of DNA by HVJ-liposome system showed transgene expression in interstitial fibroblasts. In kidney-targeted gene therapy, liposome-mediated gene transfer is an attractive method because of its simplicity and reduced toxicity. In spite of modest transgene expression, several renal disease models were successfully modulated by liposome system. Although one limitation of liposome-mediated gene delivery is the duration of transgene expression, the liposome/cDNA complex can be repeatedly administered due to the absence of an immune response.  相似文献   

5.
Neuron-restrictive silencer elements (NRSEs) were used to target the gene expression of adenoviral vectors specifically to neuron cells in the central nervous system. By generating adenoviral constructs in which NRSE sequences were placed upstream from the ubiquitous phosphoglycerate kinase promoter, the specificity of expression of a luciferase reporter gene was tested in both cell lines and primary cultures. Whereas transgene expression was negligible in nonneuronal cells following infection with an adenovirus containing 12 NRSEs, neuronal cells strongly expressed luciferase when infected with the same adenovirus. The NRSEs restricted expression of the luciferase gene to neuronal cells in vivo when adenoviruses were injected both intramuscularly into mice and intracerebrally into rats. This NRSE strategy may avoid side effects resulting from the ectopic expression of therapeutic genes in the treatment of neurological diseases. In particular, it may allow the direct transfection of motor neurons without promoting transgene expression within inoculated muscles or the secretion of transgene products into the bloodstream.  相似文献   

6.
Various regions of the brain have been successfully transduced by recombinant adeno-associated virus (rAAV) vectors with no detected toxicity. When using the cytomegalovirus immediate early (CMV) promoter, a gradual decline in the number of transduced cells has been described. In contrast, the use of cellular promoters such as the neuron-specific enolase promoter or hybrid promoters such as the chicken beta-actin/CMV promoter resulted in sustained transgene expression. The cellular tropism of rAAV-mediated gene transfer in the central nervous system (CNS) varies depending on the serotype used. Serotype 2 vectors preferentially transduce neurons whereas rAAV5 and rAAV1 transduce both neurons and glial cells. Recombinant AAV4-mediated gene transfer was inefficient in neurons and glial cells of the striatum (the only structure tested so far) but efficient in ependymal cells. No inflammatory response has been described following rAAV2 administration to the brain. In contrast, antibodies to AAV2 capsid and transgene product were elicited but no reduction of transgene expression was observed and readministration of vector without loss of efficiency was possible from 3 months after the first injection. Based on the success of pioneer work performed with marker genes, various strategies for therapeutic gene delivery were designed. These include enzyme replacement in lysosomal storage diseases, Canavan disease and Parkinson's disease; delivery of neuroprotective factors in Parkinson's disease, Huntington disease, Alzheimer's disease, amyotrophic lateral sclerosis, ischemia and spinal cord injury; as well as modulation of neurotransmission in epilepsy and Parkinson's disease. Several of these strategies have demonstrated promising results in relevant animal models. However, their implementation in the clinics will probably require a tight regulation and a specific targeting of therapeutic gene expression which still demands further developments of the vectors.  相似文献   

7.
The expression of transgenes in eukaryotic cells is a powerful approach in cell biology. In most cases, it is based on the activity of strong and constitutive viral cis-acting elements in eukaryotic expression vectors. Here we show that a widely used such element derived from an early gene of human cytomegalovirus is strongly and differentially regulated in mouse cell lines. We analyzed cytomegalovirus promoter-driven expression of stably transfected transgenes in growing, confluent, and differentiating mouse 3T3 fibroblasts, C2C12 myoblasts, and P19 teratocarcinoma cells. In the fibroblasts, transgene expression was strongly downregulated in confluent cultures and was upregulated in growing or confluent cultures by phorbol ester. In contrast, no downregulation by confluency, nor upregulation by phorbol ester, was detected in C2C12 cells. In addition, while marked upregulation was detected in differentiating myotubes, transgene expression was downregulated when differentiating teratocarcinoma cells assumed a neuronal phenotype. These results demonstrate the existence of drastic differences in the regulation of transgene expression in different types of cell lines, indicating that when studying transgene function in cells that are not growing exponentially, viral promoter-driven expression should not be taken for granted.  相似文献   

8.
The HIV-1 Nef protein expressed early in viral life cycle has been known as a potent candidate for therapeutic vaccine development. Due to different cell barriers, various cell penetrating peptides (CPPs) such as Pep-1 and CADY-2 have been known to deliver biologically active proteins to cytoplasmic compartments via the plasma membrane. In current study, we firstly evaluated the efficiency of lentiviral vector (pCDH-CMV-MCS-EF1-cGFP-T2A-puro) and eukaryotic expression vector (pEGFP-N1) for expression of HIV-1 Nef protein in HEK-293T cells using TurboFect transfection reagent. Our results showed that both vectors can effectively express the Nef proteins within the target cell. The pEGFP-N1 was more effective than pCDH-GFP for protein expression. Furthermore, Nef protein was expressed in E. coli as GST-Nef fusion and transfected by the amphipathic CPPs including Pep-1 and CADY-2 into HEK-293T cells. The size and morphology of the GST-Nef/CPP complexes were evaluated by scanning electron microscopy, and Zetasizer. Our data indicated that the recombinant GST-Nef protein generated in BL21 strain migrated as a clear band of ~50 kDa in SDS-PAGE. The CPP/GST-Nef nanoparticles were formed with a diameter of below 200 nm and notably delivered into HEK-293T cells. Generally, the Nef protein was expressed in prokaryotic and eukaryotic expression systems using different vectors and efficiently transfected in mammalian cells using various delivery systems. The in vitro efficient delivery of HIV-1 Nef gene and also its protein supports the potential of Nef DNA constructs and CPPs as potent carriers of Nef protein for HIV vaccine design in Future.  相似文献   

9.
Chronic in vivo imaging studies of the brain require a labeling method that is fast, long‐lasting, efficient, nontoxic, and cell‐type specific. Over the last decade, adeno‐associated virus (AAV) has been used to stably express fluorescent proteins in neurons invivo. However, AAV's main limitation for many studies (such as those of neuronal development) is the necessity of second‐strand DNA synthesis, which delays peak transgene expression. The development of double‐stranded AAV (dsAAV) vectors has overcome this limitation, allowing rapid transgene expression. Here, we have injected different serotypes (1, 2, 6, 7, 8, and 9) of a dsAAV vector carrying the green fluorescent protein (GFP) gene into the developing and adult mouse visual cortex and characterized its expression. We observed labeling of both neurons and astrocytes with serotype‐specific tropism. dsAAV‐GFP labeling showed high levels of neuronal GFP expression as early as 2 days postinjection and as long as a month, surpassing conventional AAV's onset of expression and matching its longevity. Neurons labeled with dsAAV‐GFP appeared structurally and electrophysiologically identical to nonlabeled neurons, suggesting that dsAAV‐GFP is neither cytotoxic nor alters normal neuronal function. We also demonstrated that dsAAV‐labeled cells can be imaged with subcellular resolution in vivo over multiple days. We conclude that dsAAV is an excellent vector for rapid labeling and long‐term in vivo imaging studies of astrocytes and neurons on the single cell level within the developing and adult visual cortex. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

10.
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB’s genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.  相似文献   

11.

Background

The production of cell-based cancer vaccines by gene vectors encoding proteins that stimulate the immune system has advanced rapidly in model systems. We sought to develop non-viral transfection methods that could transform patient tumor cells into cancer vaccines, paving the way for rapid production of autologous cell-based vaccines.

Methods

As the extended culture and expansion of most patient tumor cells is not possible, we sought to first evaluate a new technology that combines electroporation and chemical transfection in order to determine if plasmid-based gene vectors could be instantaneously delivered to the nucleus, and to determine if gene expression was possible in a cell-cycle independent manner. We tested cultured cell lines, a primary murine tumor, and primary human leukemia cells from diagnostic work-up for transgene expression, using both RFP and CD137L expression vectors.

Results

Combined electroporation-transfection directly delivered plasmid DNA to the nucleus of transfected cells, as demonstrated by confocal microscopy and real-time PCR analysis of isolated nuclei. Expression of protein from plasmid vectors could be detected as early as two hours post transfection. However, the kinetics of gene expression from plasmid-based vectors in tumor cell lines indicated that optimal gene expression was still dependent on cell division. We then tested to see if pediatric acute lymphocytic leukemia (ALL) would also display the rapid gene expression kinetics of tumor cells lines, determining gene expression 24 hours after transfection. Six of 12 specimens showed greater than 17% transgene expression, and all samples showed at least some transgene expression.

Conclusion

Given that transgene expression could be detected in a majority of primary tumor samples analyzed within hours, direct electroporation-based transfection of primary leukemia holds the potential to generate patient-specific cancer vaccines. Plasmid-based gene therapy represents a simple means to generate cell-based cancer vaccines and does not require the extensive infrastructure of a virus-based vector system.  相似文献   

12.
Adenoviral gene transfer in a rat fracture model   总被引:3,自引:0,他引:3  
For the enhancement of fracture healing, either purified proteins or vectors for expression of growth factors in situ may be used. Adenoviral vectors directly convert cells to express a transgene. However, the cell types which are preferentially infected and the time of expression during fracture healing are currently not known. The adenoviral type 5 vectors used in this study are replication incompetent viruses, one encoding beta-galactosidase (beta-GAL) and one green fluorescent protein. Femora of 35 Sprague-Dawley rats were fractured. Three days after stabilization with Kirschner wire, 10(12) pfu viral suspension were injected into the fracture zone. As a control, five animals received injections of adenovirus type 2. Animals were sacrificed after 3 days, 1, 2 and 4 weeks. Fractures healed radiographically within 2-3 weeks. All specimens were examined for beta-GAL and green fluorescent protein (GFP) expression. Fibroblast and osteoblasts within callus tissue displayed a high transgene expression (week 1). A decrease of expression was observed during the observation period. In this experimental study, we have demonstrated that all cells of the primary callus can be transfected using adenoviral vectors, which provide a tool to further investigate adenoviral transfer of growth factors such as bone morphogenetic protein-2 (BMP-2).  相似文献   

13.
It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation.  相似文献   

14.
Matrix attachment regions (MARs) can enhance the expression level of transgene in Chinese hamster ovaries (CHO) cell expression system. However, improvements in function and analyses of the mechanism remains unclear. In this study, we screened two new and more functional MAR elements from the human genome DNA. The human MAR‐3 and MAR‐7 element were cloned and inserted downstream of the polyA site in a eukaryotic vector. The constructs were transfected into CHO cells, and screened under G418 to produce the stably transfected cell pools. The expression levels and stability of enhanced green fluorescent protein (eGFP) were detected by flow cytometry. The transgene copy number and transgene expression at mRNA level were detected by quantitative real‐time PCR. The results showed that the expression level of eGFP of cells transfected with MAR‐containing vectors were all higher than those of the vectors without MARs under transient and stably transfection. The enhancing effect of MAR‐7 was higher than that of MAR‐3. Additionally, we found that MAR significantly increased eGFP copy numbers and eGFP gene mRNA expression level as compared with the vector without. In conclusion, MAR‐3 and MAR‐7 gene can promote the expression of transgene in transfected CHO cells, and its effect may be related to the increase of the number of copies.  相似文献   

15.
16.
Transduction of human embryonic stem cells by ecotropic retroviral vectors   总被引:2,自引:0,他引:2  
The steadily increasing availability of human embryonic stem (hES) cell lines has created strong interest in applying available tools for gene transfer in murine cells to human systems. Here we present a method for the transduction of hES cells with ecotropic retroviral vectors. hES cells were transiently transfected with a construct carrying the murine retrovirus receptor mCAT1. Subsequently, the cells were exposed to replication-deficient Moloney murine leukemia virus (MoMuLV) derivatives or pseudotyped lentiviral vectors. With oncoretroviral vectors, this procedure yields overall transduction efficiencies of up to 20% and permits selection of permanently transduced clones with high frequency. Selected clones maintained expression of pluripotency-associated markers and exhibited multi-germ layer differentiation both in vitro and in vivo. HES cell-derived somatic cells including neural progeny maintained high levels of transgene expression. Lentiviral vectors pseudotyped with the MoMuLV envelope could be introduced in the same manner with efficiencies of up to 33%. Transgene expression of lentivirally transduced hES cells remained permanent after differentiation even without selection pressure. Bypassing the regulatory issues associated with the use of amphotropic retroviral systems and exploiting the large pool of existing murine vectors, this method provides a safe and versatile tool for gene transfer and lineage analysis in hES cells and their progeny.  相似文献   

17.
Hepatocyte-specific gene expression from integrated lentiviral vectors   总被引:2,自引:0,他引:2  
BACKGROUND: For many applications, efficient gene therapy will require long-term, organ-specific therapeutic gene expression. Lentiviral vectors based on HIV-1 are promising gene delivery vehicles due to their ability to integrate transgenes into non-dividing cells. Many experimental vectors express transgenes under the control of the cytomegalovirus (CMV) immediate-early gene promoter. Although this promoter directs strong gene expression in vitro, it may be shut off rapidly in vivo. This study explores the potential of HIV-1-based vectors to transduce hepatocytes and compares gene expression from different promoters in integrated vectors. METHODS: HIV-1-based vector plasmids expressing the green fluorescent protein (GFP) under the control of the CMV promoter, the alpha-1 antitrypsin gene promoter or promoters derived from the hepatitis B virus (HBV) genome were used to compare expression in transfected and transduced cell lines. RESULTS: Hepatocyte cell lines differed strikingly in their transfectability. Transduction with replication-deficient HIV-1-based vector particles incorporating the different promoter elements was uniformly effective in hepatocyte and non-hepatocyte lines. However, in hepatocytes, only the CMV, alpha-1 antitrypsin and HBV core but not HBV surface promoters were able to produce GFP expression. Addition of the HBV enhancer 2 element improved the transducing ability of the HBV surface promoter and suppressed expression in non-hepatocytes increasing specificity for hepatocytes. CONCLUSIONS: Integrated lentiviral vectors can be used to direct transgene expression in liver cells both promiscuously and specifically. Promoters derived from the alpha-1 antitrypsin gene or HBV are alternatives to the CMV promoter. Inclusion of the HBV enhancer 2 permits strong liver-specific gene expression in vitro.  相似文献   

18.
19.
20.
Abstract

Cationic liposomes are non-viral gene transfer vectors for in vitro and in vivo experiments. In the present studies, we investigated whether a disulfide linkage in a cationic lipid was reducible by cell lysate resulting in the release of plasmid DNA and enhanced gene transfection. We also investigated if the differences in transgene production were from differences in total amount of cellular associated plasmid DNA. We systematically compared the gene transfection of disulfide bond containing-cationic lipid, 1', 2'-dioleoyl-sn-glycero-3'-succinyl-2-hydroxyethyl disulfide ornithine conjugate (DOGSDSO), its non-disulfide-containing analog, 1', 2'-dioleyl-sn-glycero-3'-succinyl-1, 6-hexanediol ornithine conjugate (DOGSHDO), 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP). Two transgene reporter systems (i.e., luciferase and green fluorescent protein (GFP)) were used to address transgene transgene expression and transgene efficiency. Experiments with the luciferase expression plasmid resulted in transgene activity up to 11 times greater transgene production for the disulfide containing lipid in at least two different cell lines, COS 1 and CHO cells. When transgene expression was determined by GFP activity, DOGSDSO liposomes were four times greater than the non-disulfide lipid or positive control (DOTAP) liposomes. By quantifying nucleic acid uptake by flow cytometry it was also demonstrated that increase expression was not solely from an increase in cellular plasmid DNA accumulation. These results demonstrate that cationic lipids containing a disulfide linkage are a promising method for gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号