首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that the ocular lenses of the pontellid copepod Anomalocera ornata possess vertebrate-like β- and γ-crystallins. We cannot repeat our earlier data suggesting that the copepod lens crystallins belong to the β- and γ-crystallin family of proteins. Our new data are consistent with the copepod crystallins being novel proteins.  相似文献   

2.
βγ-Crystallins have emerged as a superfamily of structurally homologous proteins with representatives across the domains of life. A major portion of this superfamily is constituted by members from microorganisms. This superfamily has also been recognized as a novel group of Ca2+-binding proteins with huge diversity. The βγ domain shows variable properties in Ca2+ binding, stability and association with other domains. The various members present a series of evolutionary adaptations culminating in great diversity in properties and functions. Most of the predicted βγ-crystallins are yet to be characterized experimentally. In this review, we outline the distinctive features of microbial βγ-crystallins and their position in the βγ-crystallin superfamily.  相似文献   

3.
Gao Q  Xiang Y  Zeng L  Ma XT  Lee WH  Zhang Y 《Biochimie》2011,93(10):1865-1872
βγ-CAT is a naturally existing 72-kDa complex of a non-lens βγ-crystallin (α-subunit, CAT-α) and a trefoil factor (β-subunit, CAT-β) that contains a non-covalently linked form of αβ2 and was isolated from the skin secretions of the toad Bombina maxima. The N-terminal region of CAT-α (CAT-αN, residues 1–170) contains two βγ-crystallin domains while the C-terminal region (CAT-αC) has sequence homology to the membrane insertion domain of the Clostridium perfringens epsilon toxin. To examine the biochemical characteristics of the βγ-crystallin domains of βγ-CAT, CAT-αN, CAT-αC and CAT-β were expressed in Escherichia coli. Co-immunoprecipitation of the naturally assembled βγ-CAT confirmed that the CAT-α and CAT-β complex always exists. Furthermore, recombinant CAT-β bound recombinant CAT-αN. Ca2+-binding motifs were identified in CAT-αN, and recombinant CAT-αN was able to bind the calcium probe terbium. However, the conformation of CAT-αN was not significantly altered upon Ca2+ binding. βγ-CAT possesses strong hemolytic activity toward human erythrocytes, and treatment of erythrocytes with βγ-CAT resulted in a rapid Ca2+ influx, eventually leading to hemolysis. However, in the absence of extracellular Ca2+, no significant hemolysis was detected, even though the binding and oligomerization of βγ-CAT in the erythrocyte membrane was observed. Our data demonstrate the binding of CAT-β (a trefoil factor) to CAT-αN (βγ-crystallin domains) and provide a basis for the formation of a βγ-crystallin and trefoil factor complex in vivo. Furthermore, the βγ-crystallin domains of βγ-CAT are able to bind Ca2+, and βγ-CAT-induced hemolysis is Ca2+ dependent.  相似文献   

4.
The topologically similar βγ-crystallins that are prevalent in all kingdoms of life have evolved for high innate domain stability to perform their specialized functions. The evolution of stability and its control in βγ-crystallins that possess either a canonical (mostly from microorganisms) or degenerate (principally found in vertebrate homologues) Ca2+-binding motif is not known. Using equilibrium unfolding of βγ-crystallin domains (26 wild-type domains and their mutants) in apo- and holo-forms, we demonstrate the presence of a stability gradient across these members, which is attained by the choice of residues in the (N/D)(N/D)XX(S/T)S Ca2+-binding motif. The occurrence of a polar, hydrophobic, or Ser residue at the 1st, 3rd, or 5th position of the motif is likely linked to a higher domain stability. Partial conversion of a microbe-type domain (with a canonical Ca2+-binding motif) to a vertebrate-type domain (with a degenerate Ca2+-binding motif) by mutating serine to arginine/lysine disables the Ca2+-binding but significantly augments its stability. Conversely, stability is compromised when arginine (in a vertebrate-type disabled domain) is replaced by serine (as a microbe type). Our results suggest that such conversions were acquired as a strategy for desired stability in vertebrate members at the cost of Ca2+-binding. In a physiological context, we demonstrate that a mutation such as an arginine to serine (R77S) mutation in this motif of γ-crystallin (partial conversion to microbe-type), implicated in cataracts, decreases the domain stability. Thus, this motif acts as a "central tuning knob" for innate as well as Ca2+-induced gain in stability, incorporating a stability gradient across βγ-crystallin members critical for their specialized functions.  相似文献   

5.
In jawed vertebrates, βγ-crystallins are restricted to the eye lens and thus excellent markers of lens evolution. These βγ-crystallins are four Greek key motifs/two domain proteins, whereas the urochordate βγ-crystallin has a single domain. To trace the origin of the vertebrate βγ-crystallin genes, we searched for homologues in the genomes of a jawless vertebrate (lamprey) and of a cephalochordate (lancelet). The lamprey genome contains orthologs of the gnathostome βB1-, βA2- and γN-crystallin genes and a single domain γN-crystallin-like gene. It contains at least two γ-crystallin genes, but lacks the gnathostome γS-crystallin gene. The genome also encodes a non-lenticular protein containing βγ-crystallin motifs, AIM1, also found in gnathostomes but not detectable in the uro- or cephalochordate genome. The four cephalochordate βγ-crystallin genes found encode two-domain proteins. Unlike the vertebrate βγ-crystallins but like the urochordate βγ-crystallin, three of the predicted proteins contain calcium-binding sites. In the cephalochordate βγ-crystallin genes, the introns are located within motif-encoding region, while in the urochordate and in the vertebrate βγ-crystallin genes the introns are between motif- and/or domain encoding regions. Coincident with the evolution of the vertebrate lens an ancestral urochordate type βγ-crystallin gene rapidly expanded and diverged in the ancestral vertebrate before the cyclostomes/gnathostomes split. The β- and γN-crystallin genes were maintained in subsequent evolution, and, given the selection pressure imposed by accurate vision, must be essential for lens function. The γ-crystallin genes show lineage specific expansion and contraction, presumably in adaptation to the demands on vision resulting from (changes in) lifestyle.  相似文献   

6.
A detailed investigation of hydrodynamic and conformational behavior has been made of the HMα-crystallin and α-crystallins of bovine lens. Results from this study indicated that HMα (high-molecular-weight α-crystallin) and α (low-molecular-weight α-crystallin) possess considerable size and charge heterogeneities in their native structures and subunit polypeptides, respectively. Sedimentation velocity showed a heterogeneous polydisperse system of HMα with an average sedimentation coefficient of about 50 S and a more homogeneous system of α-crystallin of 20 S. Viscosity and circular dichroism studies pointed to a compact and globular shape of dominant β-sheet conformation for α-crystallin, yet a highly asymmetrical and aggregated form for HMα. The conformational stability of α-crystallin was investigated in the presence of various denaturants. The evidence presented shows that hydrogen bonding is the main force in maintaining the quaternary structure of compact native α-crystallin. Conformational flexibility of α-crystallin demonstrated in the equilibrium unfolding study indicated a multistep transition that made the extraction of thermodynamic data from the heat denaturation study difficult. Temperature perturbation on α-crystallin suggested the possible involvement of hydrophobic interaction in the aggregation process, leading to the formation of HMα from α-crystallin. The comparison of conformational properties between HMα and α-crystallin strongly indicated that HMα is a denatured form of α-crystallin.  相似文献   

7.
A detailed investigation of the hydrodynamic and aggregation behaviors has been made on the -crystallins of bovine lens. Results from this study indicated that H (high-molecular-weight -crystallin) and L (low-molecular-weight -crystallin) exhibited considerable heterogeneity in their native structures and subunit polypeptides. Low-speed sedimentation equilibrium showed a heterogeneous paucidisperse system in each -crystallin fraction. Viscosity and circular dichroism studies pointed to a compact and globular shape and the presence of -sheet and -turns in these crystallins. Dissociation of H by urea and guanidinium HCl followed by reassociation during gel-filtration chromatography produced an elution pattern with two fractions corresponding to L crystallin and high-molecular-weight aggregates without the formation of native H. By contrast, under similar treatment, about 60% L reassociated into the correct native structure and the rest into high-molecular-weight fractions. Amino acid analyses of H and L and their corresponding subunit polypeptides demonstrated the close similarity of these crystallins. Trace element analyses indicated that both Ca and Mg are present in H and L crystallins and may be involved in maintaining the native quarternary structures of these proteins.  相似文献   

8.
Until now, the structure and optics of the calcite lenses in abathochroal trilobite eyes have not been investigated. So, the relationship of the abathochroal eye to other types of trilobite eyes has remained unclear. We have reconstructed the exact shape and optics of the lenses in the eodiscid trilobite Neocobboldia chinlinica to determine the mechanism of its abathochroal eye. The distal lens surface has a convex profile, while on the proximal lens surface there is a small central bulge, resulting in an undulating profile. Due to this bulge, the curvature and refractive power of the central region of the lens are greater than those of the peripheral zone. Consequently, the lens is bifocal. However, Neocobboldia could not take advantage of this bifocal property of its tiny lenses because of the diffraction of light and the infinite depth of field in object space. For the same reason, it is also sure that the undulating lower surface of the abathochroal lens did not evolve as a Huygensian profile, correcting for spherical aberration, as suggested earlier. This undulation is a result of the presence of the central bulge, the evolutionary significance of which remains enigmatic. On the basis of our results, we have outlined an evolutionary scenario for development of the optics of the lenses in trilobite eyes.  相似文献   

9.
 EP37 is an epidermis-specific protein found in the developing embryo of the Japanese newt, Cynops pyrrhogaster. Our previous study predicted the presence of genes homologous to EP37, which show temporary shared expression at the turn of metamorphosis. In this study, we isolated and characterized three cDNAs encoding novel EP37 homologues; two from the skin of an adult newt and the other from swimming larva. Conceptual translation of the open reading frames of these cDNAs predicted proteins carrying βγ-crystallin motifs and putative calcium-binding sites, both of which are features shared by the originally identified EP37 (EP37L1), as well as a spore coat protein of Myxococcus xanthus, protein S. Immunoblot analyses and immunohistochemical studies indicated that two of the EP37 proteins, EP37L1 and EP37L2, are exclusively expressed in the epidermis (skein cells) including the figures of Eberth at premetamorphic stages. During and after metamorphosis, the expression of EP37 proteins was mainly observed in cutaneous glands, and a molecular transition to the adult types of EP37, EP37A1 and EP37A2, occurred. These observations suggest that EP37 proteins play an important role in construction of integumental tissues and adaptation to the aquatic or amphibious environment. Received: 6 September 1996 / Accepted: 30 October 1996  相似文献   

10.
This laboratory study reports some reproductive responses of the copepod Acartia bifilosa to rapid variations in pH. The imposed changes mimic those that copepods could experience due to coastal upwelling, changed mixing conditions or vertical migration. We measured effects of low pH on egg production, hatching and early nauplii development (H0: no effects on response variables between low and ambient pH). On treatment with low pH, we found positive effects on egg production rate and nauplii development time. The positive response to low pH could be an initial stress response or show that A. bifilosa is tolerant to the experimental pH values. The result suggests that A. bifilosa is adapted to pH changes as it performs daily migrations between the depths with differing pH. It could also be advantageous for population development if eggs hatch at high speed and so reduce the possibility that they will sink into anoxic and low pH waters.  相似文献   

11.
We report the isolation of the murine ortholog of AIM1, a human gene whose expression is associated with the reversal of tumorigenicity in an experimental model of melanoma. Mouse and human AIM1 are more than 90% identical in amino acid sequence in the βγ-crystallin repeats and the C-terminal domain, and more than 75% identical in the extended N-terminal domain. Consistent with the isolated cDNA representing the authentic AIM1 ortholog, linkage analysis localized mouse Aim1 to proximal mouse Chromosome (Chr) 10 in a conserved linkage group with genes localized to human Chr band 6q21. Searches of EST databases identified a second AIM1-like gene in both mouse and human, suggesting the existence of a gene family. Northern analysis demonstrates Aim1 is expressed most abundantly in adult skin, lung, heart, liver, and kidney and is temporally regulated during embryogenesis. Aim1 is expressed highly in the shaft region of the hair follicles and the presumptive ectoderm, but not at detectable levels in melanocytes or melanocyte precursor cells. Received: 18 February 1998 / Accepted: 8 May 1998  相似文献   

12.
This review summarizes and analyzes data on structural and functional peculiarities of - and -subunits of heterotrimeric G proteins and their participation in -dimer in processes of hormonal signal transduction to the cell. The molecular mechanisms are discussed, which are responsible for formation of the -dimer complex and its interaction with the wide spectrum of signal and structural proteins, such as G protein -subunit, serpentine type receptors, kinases of G protein-coupled receptors, adenylyl cyclase, phospholipase C2, phosphatidyl-inositol-3-kinase, Raf-kinase, potassium and calcium channels, microtubular and RGS-proteins. The characteristics of - and -subunits are given for living organisms of different phylogenetic levels (lower eukaryotes, fungi, plants, vertebrates, and invertebrates). It is concluded that the -dimer is the most important regulatory link in various signal systems to carry out switch from one signal cascade to another and thereby to determine the final cellular response to the signal impulse.  相似文献   

13.
Human lens membranes contain the highest cholesterol concentration of any known biological membranes, but it significantly decreases with age. Oxygenation of cholesterol generates numerous forms of oxysterols (bile acids). We previously showed that two forms of the bile acid components—ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA)—suppressed lens epithelial cell death and alleviated cataract formation in galactosemic rat lenses. We investigated whether these compounds also suppress the thermal aggregation of human lens crystallins. Total water-soluble (WS) proteins were prepared from human lenses, and recombinant human crystallins (αA-, αB-, βB2-, and γC-crystallin) were generated by a prokaryotic expression system and purified by liquid chromatography. The light scattering of proteins in the presence or absence of UDCA or TUDCA was measured using a spectrofluorometer set at Ex/Em = 400/400 nm. Protein blot analysis was conducted for detection of α-crystallins in the human lens WS proteins. High concentrations of UDCA and TUDCA significantly suppressed thermal aggregation of total lens WS proteins, which contained a low level of αA-/αB-crystallin. Spectroscopic analysis with each recombinant human lens crystallin indicated that the bile acids did not suppress the thermal aggregation of γC-, βB2-, αA-, or αB-crystallin. Combination of α-crystallin and bile acid (either UDCA or TUDCA) suppressed thermal aggregation of each individual crystallin as well as a non-crystallin protein, insulin. These results suggest that UDCA or TUDCA protects the chaperone activity of α-crystallin. It is believed that these two naturally occurring intermediate waste products in the lens enhance the chaperone activity of α-crystallin. This finding may lead to the development of UDCA and TUDCA as anticataract agents.  相似文献   

14.
15.
Most of the βγ-crystallins are structural proteins with high intrinsic stability, which gets enhanced by Ca(2+)-binding in microbial members. Functions of most of these proteins are yet to be known. However, a few of them were reported to be involved in Ca(2+)-dependent and stress-related functions. Hahellin, a microbial homolog, is a natively unfolded protein that acquires a well-folded structure upon Ca(2+) binding. Although the structure of βγ-crystallin domains is well understood, the dynamical features are yet to be explored. We have investigated for the first time the equilibrium dynamics, conformational heterogeneity and associated low-lying free-energy states of hahellin in its Ca(2+)-bound form using NMR spectroscopy to understand the dynamics of a βγ-crystallin domain. Hahellin shows large conformational heterogeneity with nearly 40% of the residues, some of which are part of Ca(2+)-binding loops, accessing alternative states. Further, out of the two Greek key motifs, which together constitute the βγ-crystallin domain, the second Greek key motif is floppy as compared to its relatively rigid counterpart. Taken together, we believe that these characteristics might be of importance to understand the stability and functions of βγ-crystallin domains.  相似文献   

16.
Non-specific interactions in beta- and gamma-crystallins have been studied by solution X-ray scattering and osmotic pressure experiments. Measurements were carried out as a function of protein concentration at two ionic strengths. The effect of temperature was tested between 7 degrees C and 31 degrees C. Two types of interactions were observed. With beta-crystallin solutions, a repulsive coulombic interaction could be inferred from the decrease of the normalized X-ray scattering intensity near the origin with increasing protein concentration and from the fact that the osmotic pressure increases much more rapidly than in the ideal case. As was previously observed with alpha-crystallins, such behaviour is dependent upon ionic strength but is hardly affected by temperature. In contrast, with gamma-crystallin solutions, the normalized X-ray scattering intensity near the origin increases with increasing protein concentration and the osmotic pressure increases less rapidly than in the ideal case. Such behaviour indicates that attractive forces are predominant, although we do not yet know their molecular origin. Under our experimental conditions, the effect of temperature was striking whereas no obvious contribution of the ionic strength could be seen, perhaps owing to masking by the large temperature effect. The relevance of the different types of non-specific interactions for lens function is discussed.  相似文献   

17.
Applied Microbiology and Biotechnology - βγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of...  相似文献   

18.
Rheotaxis is a ubiquitous phenomenon among aquatic animals and thought to be an adaptation to maintain populations in flowing waters. While many estuarine copepods can retain their populations in estuaries with net seaward flow, rheotaxis of individual copepods has not been reported before. In this study, the behavior of a calanoid copepod Pseudodiaptomus annandalei in flow was examined in a recirculating laboratory flume. This estuarine copepod displayed different responses to ambient flow fields while swimming in the water column or attaching to the flume bed (walls). Copepods in the water column showed vigorous countercurrent swimming by occasional bounding when flow velocity was increased up to 2.1 cm s?1, but none of the individuals in the water column were retained in the flume when flow speeds were higher than 4 cm s?1. This indicates P. annandalei profits little from rheotaxis to withstand flow when they were swimming in the water column. Instead, more individuals attempted sinking downwards to the slow flow region near the flume bed (walls) and showed active substrate attachment to avoid being flushed out by the high-velocity channel flow. The results suggest that P. annandalei benefits from rheotaxis and association with the substrate which allows them to hold position well at ambient flow velocities up to 3 cm s?1. These adaptive responses might be important for population maintenance.  相似文献   

19.
20.
Ghasia FF  Angelaki DE 《Neuron》2005,47(2):281-293
As we look around, the orientation of our eyes depends on the order of the rotations that are carried out, a mathematical feature of rotatory motions known as noncommutativity. Theorists and experimentalists continue to debate how biological systems deal with this property when generating kinematically appropriate movements. Some believe that this is always done by neural commands to a simplified eye plant. Others have postulated that noncommutativity is implemented solely by the mechanical properties of the eyeball. Here we directly examined what the brain tells the muscles, by recording motoneuron activities as monkeys made eye movements. We found that vertical recti and superior/inferior oblique motoneurons, which drive sensory-generated torsional eye movements, do not modulate their firing rates according to the noncommutative-driven torsion during pursuit. We conclude that part of the solution for kinematically appropriate eye movements is found in the mechanical properties of the eyeball, although neural computations remain necessary and become increasingly important during head movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号