首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In nerve terminals, vesicular transporters pack neurotransmitters into synaptic vesicles, which is an essential prerequisite for transmitter release. To date, three distinct families of vesicular transporters have been identified which are specific for (a) excitatory amino acids (glutamate and aspartate), (b) inhibitory amino acids (GABA and glycine) and (c) acetylcholine and monoamines. The present study evaluated the effect of transient focal cerebral ischemia on the expression of these vesicular transporters in adult rat brain. Ischemia was induced by a 1 h transient middle cerebral artery occlusion (MCAO) in spontaneously hypertensive rats. At various reperfusion periods (3-72 h), mRNA levels of the vesicular transporters were estimated in the contralateral and the ipsilateral cerebral cortex by real-time PCR analysis. Following transient focal ischemia, mRNA expression of the vesicular GABA transporter (VGAT) decreased significantly by 3 h of reperfusion and remained at a significantly lower level than sham until at least 72 h of reperfusion. Western blotting showed a significant decrease in the VGAT immunoreactive protein levels in the ipsilateral cortex of rats subjected to focal ischemia and 24 h reperfusion. Immunohistochemistry demonstrated many VGAT immunopositive puncta in the contralateral cortex, which were significantly decreased in the ipsilateral cortex at 24 h reperfusion. Focal ischemia had no effect on the mRNA levels of the vesicular transporters specific for glutamate/aspartate, acetylcholine and monoamines at either 6 h or 24 h of reperfusion.  相似文献   

2.
Transient focal cerebral ischemia leads to extensive excitotoxic neuronal damage in rat cerebral cortex. Efficient reuptake of the released glutamate is essential for preventing glutamate receptor over-stimulation and neuronal death. Present study evaluated the expression of the glial (GLT-1 and GLAST) and neuronal (EAAC1) subtypes of glutamate transporters after transient middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Between 24h to 72h of reperfusion after transient MCAO, GLT-1 and EAAC1 protein levels decreased significantly (by 36% to 56%, p < 0.05) in the ipsilateral cortex compared with the contralateral cortex or sham control. GLT-1 and EAAC1 mRNA expression also decreased in the ipsilateral cortex of ischemic rats at both 24h and 72h of reperfusion, compared with the contralateral cortex or sham control. Glutamate transporter down-regulation may disrupt the normal clearance of the synaptically-released glutamate and may contribute to the ischemic neuronal death.  相似文献   

3.
4.
In the present study, we examined the temporal and spatial expression profiles of GFAP mRNA and protein in a focal cerebral ischemia model with ischemic injury confined to the cerebral cortex in the right middle cerebral artery (MCA) territory. Northern blot analysis showed a respective 5.5-fold and 7.2-fold increase in the GFAP mRNA in the ischemic right MCA cortex in rats subjected to 30-min (mild) or 60-min (severe) ischemia followed by 72-hr reperfusion. The GFAP mRNA signal remained elevated up to 2-week reperfusion. Interestingly, increased GFAP mRNA signal was clearly demonstrated for the first time in the left MCA cortex. A significant 1.5-fold and 5-fold increase was observed after 72-hr reperfusion following mild and severe ischemia, respectively. However, unlike the ischemic right MCA cortex, this induction was transient in the non-ischemic left MCA counterpart. In situ hybridization studies further revealed characteristic spatial induction profile following mild vs. severe ischemia. In mild ischemia, following 24-hr reperfusion, increase in GFAP mRNA was observed mainly within the ischemic right MCA cortex. Following 72-hr reperfusion, GFAP mRNA signal was observed in virtually the entire ischemic cortex, particularly the amygdala region, then gradually reduced and restricted to right MCA territory and subcortical thalamic nucleus following 2-week reperfusion. On the other hand, in severe ischemia, following 24-hr reperfusion increased GFAP mRNA signal was observed in area surrounding right MCA territory (infarct region) and outer cortical layers within the right MCA territory. Following 72-hr reperfusion, no signal was detected within right MCA cortex; however, increased GFAP signal was detected throughout the remaining ipsilateral cortex and subcortical region, as well as the contralateral cerebral cortex. GFAP mRNA signals then gradually reduced its intensity and was restricted to area surrounding necrosis and ipsilateral thalamic nucleus following 2-week reperfusion. GFAP-like immunoreactivity was also detected in area expressing GFAP mRNA. It is very likely that de novo synthesis was responsible for this increase. In summary, increased GFAP signal was noted in both ipsilateral and contralateral cerebral following mild and severe ischemia. Although the temporal induction profile for mild vs. severe ischemia was similar, the spatial induction profile was different. The mechanism leading to this differential induction and their physiological and functional significance are not clear at present. It is very likely that some local factors may involve, nevertheless, the detailed mechanisms remain to be fully explored.  相似文献   

5.
Extracellular superoxide dismutase (EC-SOD) is neuroprotective, but its role in cerebral ischemia remains to be determined. We herein describe the topographical localization and quantitative changes in EC-SOD and its mRNA expression following cerebral ischemia in mice. Mice were subjected to transient forebrain ischemia and varied intervals of reperfusion. The measurements of EC-SOD using ELISA showed increased brain EC-SOD after 24 h of reperfusion and an increase in EC-SOD brain/serum ratio after 3 h. The immunohistochemical examination in normal mice showed strong EC-SOD immunoreactivity in the choroid plexus, pia mater, and ventral tuberal area of the hypothalamus. EC-SOD immunoreactivity in cortical and striatal capillary wall was conspicuous after 3 h. EC-SOD immunoreactivity was also noted in cortical neurons after 24 h. Northern blot analysis showed an increased EC-SOD mRNA expression in the brain after 24 h. An in situ hybridization study in normal mice demonstrated the mRNA expression of EC-SOD in choroid plexus and neurons through the brain especially in the cortex or ventral tuberal area of the hypothalamus, but demonstrated no mRNA expression of EC-SOD in the capillary wall. These findings suggest that EC-SOD accumulates on endothelial cells in response to this injury by an unknown mechanism, while cortical neurons produce EC-SOD themselves after cerebral ischemia with reperfusion.  相似文献   

6.
7.
研究粘附分子和白细胞与脑缺血/再灌流损伤的病理联系,运用原位杂交和免疫组化技术对36只SD大鼠脑缺血区细胞间粘附分子(ICAM-1)表达和淋巴细胞机能相关抗原(LFA-1)阳性细胞浸润进行了观察。结果显示,脑缺血区的毛细胞血管内皮细胞表达ICAM-1 mRNA发生于脑缺血1h,在脑缺血1h/再灌流8h达到高峰。而脑缺血区毛细血管ICAM-1蛋白质的表达则发生于脑缺血1h/再灌流2h,高峰出现于脑缺血1h/再灌流16h,LFA-1阳性细胞在脑缺血区的聚集发生在脑缺血1h,并随再灌流时间延长,其聚集数量逐渐增加。结果提示,脑缺血/再灌流能诱导缺血区的血管内皮细胞表达ICAM-1 mRNA和蛋白质,进而导致白细胞在脑缺血区的浸润,此可能是脑缺血/再灌流损伤的病理机制之一。  相似文献   

8.
9.
Expression of NMDA neuroreceptors in experimental ischemia   总被引:7,自引:0,他引:7  
The role of NMDA receptors in molecular mechanisms of neurotoxicity was investigated using rat models of global and focal cerebral ischemia. Expression of NR2A and NR2B receptor mRNAs up-regulated in cortex after 3 h of reperfusion following middle cerebral artery occlusion (MCAo). This effect was accompanied by an increase in NR2A and NR2B immunoreactivity. At six hours of reperfusion, drastic activation of NR2A mRNA expression was observed in the penumbra that returned to the control level at 24 h of reperfusion. The monitoring of NR2A autoantibodies in the blood of the experimental rats showed its reliable increase to the 5-6th day of reperfusion that maintained elevated to the 20th day of the experiment. The data indicate that NR2A and 2B receptor subunits and NR2A autoantibodies are biochemical markers of the neurotoxicity underlying cerebral ischemia.  相似文献   

10.
To further explore the pathophysiological significance of arachidonic acid-sensitive potassium channels, RT-PCR and Western blot analysis were used to investigate the expression changes of TREK channels in cortex and hippocampus in rat experimental acute cerebral ischemia in this study. Results showed that TREK-1 and TRAAK mRNA in cortex, TREK-1 and TREK-2 mRNA in hippocampus showed significant increases 2 h after middle cerebral artery occlusion (MCAO). While the mRNA expression levels of the all three channel subtypes increased significantly 24 h after MCAO in cortex and hippocampus. At the same time, the protein expressions of all the three channel proteins showed significant increase 24 h after MCAO in cortex and hippocampus, but only TREK-1 showed increased expression 2 h after MCAO in cortex and hippocampus. Immunohistochemical experiments verified that all the three channel proteins had higher expression levels in cortical and hippocampal neurons 24 h after MCAO. These results suggested a strong correlation between TREK channels and acute cerebral ischemia. TREK channels might provide a neuroprotective mechanism in the pathological process.  相似文献   

11.
Vascular endothelial growth factor (VEGF-A) is hypoxia-inducible signal glycoprotein. VEGF-A induces vascular endothelial cell proliferation, which leads to the reconstitution of the vascular network in brain regions damaged by ischemia. However, this protein is also involved in the processes of inflammation and edema in early stages of ischemia. The synthetic peptide Semax has neuroprotective and anti-inflammatory properties and is actively used in the treatment of cerebral ischemia. We have previously shown that Semax reduces vascular injury and activates the mRNA synthesis of neurotrophins and their receptors during global cerebral ischemia in rats. In this work, we studied the effect of Semax and its C-terminal Pro-Gly-Pro tripeptide on Vegfa mRNA expression in different regions of the rat brain after 0.5, 1, 2, 4, 8, 12 and 24 h, which is the irreversible occlusion of the common carotid arteries. It was shown that ischemia increases the levels of Vegfa mRNA in rat brains (4 h after occlusion in cerebellum, cerebral cortex, and hippocampus; 8 h after occlusion in the cortex and hippocampus; and 24 h after occlusion in the cortex). Treatment with Semax reduces the levels of Vegfa mRNA in the frontal cortex (4, 8 and 12 h after occlusion) and the hippocampus (2 and 4 h after occlusion). The effect of PGP on the Vegfa gene expression was almost negligible. It was shown that Semax prevents the activating effect of hypoxia on the expression of the Vegfa gene at early stages of global cerebral ischemia. In turn, an increase in the level of Vegfa mRNA in the hippocampus 24 h after occlusion and Semax administration apparently reflects the neuroprotective properties of the drug.  相似文献   

12.
Pyridoxal 5'-phosphate (PLP) is an important cofactor in a wide range of biochemical reactions, such as the metabolism of various amino acids, including GABA. PLP is synthesized by the oxidation of pyridoxine 5'-phosphate (PNP), which is catalyzed by PNP oxidase (PNPO). We observed the changes in cresyl violet-positive neurons, PNPO immunoreactivity and PNPO protein levels in the somatosensory cortex and striatum in gerbils after 5 min of transient forebrain ischemia. Cresyl violet-positive neurons showed condensed cytoplasm in the somatosensory cortex and lateral part of the striatum at 2 days after ischemia/reperfusion. PNPO immunoreactivity began to increase in neurons in layers III and V at 3 h after ischemia/reperfusion and this immunoreactivity was significantly increased at 12 h after ischemia/reperfusion. Thereafter, PNPO immunoreactivity decreased with time after ischemia/reperfusion. PNPO-immunoreactive neurons were only slightly detected in the lateral part of the striatum at 12 h after ischemia/reperfusion. In addition, the PNPO protein levels in both the somatosensory cortex and striatum homogenates peaked at 12 h after ischemia/reperfusion. These results indicate that PNPO is significantly increased in the ischemic somatosensory cortex and lateral part of the striatum, and this change in the level of PNPO may be associated with the neuronal damage induced by ischemia.  相似文献   

13.
Although mRNA expression of group IIA secretory phospholipase A2 (sPLA2-IIA) has been implicated in responses to injury in the CNS, information on protein expression remains unclear. In this study, we investigated temporal and spatial expression of sPLA2-IIA mRNA and immunoreactivity in transient focal cerebral ischemia induced in rats by occlusion of the middle cerebral artery. Northern blot analysis showed a biphasic increase in sPLA2-IIA mRNA expression following 60-min of ischemia-reperfusion: an early phase at 30 min and a second increase at a late phase ranging from 12 h to 14 days. In situ hybridization localized the early-phase increase in sPLA2-IIA mRNA to the affected ischemic cortex and the late-phase increase to the penumbral area. Besides sPLA2-IIA mRNA, glial fibrillary acidic protein (GFAP) and cyclo-oxygenase-2 mRNAs, but not cytosolic PLA2, also showed an increase in the penumbral area at 3 days after ischemia-reperfusion. Immunohistochemistry of sPLA2-IIA indicated positive cells in the penumbral area similar to the GFAP-positive astrocytes but different from the isolectin B4-positive microglial cells. Confocal microscopy further confirmed immunoreactivity of sPLA2-IIA in reactive astrocytes but not in microglial cells. Taken together, these results demonstrate for the first time an up-regulation of the inflammatory sPLA2-IIA in reactive astrocytes in response to cerebral ischemia-reperfusion.  相似文献   

14.
Abstract: Although considerable evidence supports a role for amino acids in transient global cerebral ischemia and permanent focal cerebral ischemia, effects of transient focal cerebral ischemia on the extracellular concentrations of amino acids have not been reported. Accordingly, our study was undertaken to examine the patterns of changes of extracellular glutamate, aspartate, GABA, taurine, glutamine, alanine, and phosphoethanolamine in the striatum of transient focal cerebral ischemia, as evidence to support their pathogenic roles. Focal ischemia was induced using the middle cerebral artery occlusion model, with no need for craniotomy. Microdialysis was used to sample the brain's extracellular space before, during, and after the ischemic period. One hour of middle cerebral artery occlusion followed by recirculation caused neuronal damage that was common in the frontoparietal cortex and the lateral segment of the caudate nucleus. During 1 h of ischemia, the largest increase occurred for GABA and moderate increases were observed for taurine, glutamate, and aspartate. Alanine, which is a nonneuroactive amino acid, increased little. After recirculation, the levels of glutamate and aspartate reverted to normal baseline values right after reperfusion. Despite these rapid normalizations, neuronal damage occurred. Therefore, uptake of excitatory amino acids can still be restored after 1 h of middle cerebral artery occlusion, and tissue damage occurs even though high extracellular levels of glutamate are not maintained.  相似文献   

15.
Oxidative stress is a major pathogenic event occurring in several brain disorders and is a major cause of brain damage due to ischemia/reperfusion. Thiol proteins are easily oxidized in cells exposed to reactive oxygen species (ROS). In the present study, we investigated transient ischemia-induced chronological changes in hyperoxidized peroxiredoxins (Prx-SO3) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH-SO3) immunoreactivity and protein levels in the gerbil hippocampus induced by 5 min of transient forebrain ischemia. Weak Prx-SO3 immunoreactivity is detected in the hippocampal CA1 region of the sham-operated group. Prx-SO3 immunoreactivity was significantly increased 12 h and 1 day after ischemia/reperfusion, and the immunoreactivity was decreased to the level of the sham-operated group 2 days after ischemia/reperfusion. Prx-SO3 immunoreactivity in the 4 days post-ischemia group was increased again, and the immunoreactivity was expressed in glial components for 5 days after ischemia/reperfusion. GAPDH-SO3 immunoreactivity was highest in the CA1 region 1 day after ischemia/reperfusion, the immunoreactivity was decreased 2 days after ischemia/reperfusion. Four days after ischemia/reperfusion, GAPDH-SO3 immunoreactivity increased again, and the immunoreactivity began to be expressed in glial components from 5 days after ischemia/reperfusion. Prx-SO3 and GAPDH-SO3 protein levels in the ischemic CA1 region were also very high 12 h and 1 day after ischemia/reperfusion and returned to the level of the sham-operated group 3 days after ischemia/reperfusion. Their protein levels were increased again 5 days after ischemia/reperfusion. In conclusion, Prx-SO3 and GAPDH-SO3 immunoreactivity and protein levels in the gerbil hippocampal CA1 region are significantly increased 12 h-24 h after ischemia/reperfusion and their immunoreactivity begins to be expressed in glial components from 4 or 5 days after ischemia/reperfusion.  相似文献   

16.
Zhou Y  Wei EQ  Fang SH  Chu LS  Wang ML  Zhang WP  Yu GL  Ye YL  Lin SC  Chen Z 《Life sciences》2006,79(17):1645-1656
The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase.  相似文献   

17.
Excitatory amino acid release and neurotoxicity in the ischemic brain may be reduced by endogenously released adenosine which can modulate both glutamate or aspartate release and depress neuronal excitability. The present study reports on the patterns of release of glutamate and aspartate; the inhibitory amino acids GABA and glycine; and of the purine catabolites adenosine and inosine from the rat parietal cerebral cortex during 20 and 60 min periods of middle cerebral artery (MCA) occlusion followed by reperfusion. Aspartate and glutamate efflux into cortical superfusates rose steadily during the period of ischemia and tended to increase even further during the subsequent 40 min of reperfusion. GABA release rose during ischemia and declined during reperfusion, whereas glycine efflux was relatively unchanged during both ischemia and reperfusion. Adenosine levels in cortical superfusates rose rapidly at the onset of ischemia and then declined even though MCA occlusion was continued. Recovery to pre-occulusion levels was rapid following reperfusion. Inosine efflux also increased rapidly, but its decline during reperfusion was slower than that of adenosine.  相似文献   

18.
Wen Y  Yang S  Liu R  Simpkins JW 《FEBS letters》2005,579(21):4591-4599
Recent evidence indicates that cell-cycle regulating proteins are involved in apoptotic process in post-mitotic neurons. In this study, we examined cell-cycle regulators for G1/S cell-cycle progression after a transient focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion. In the cerebral frontoparietal cortex, we observed a marked induction of Cyclin D1 (a coactivator of Cdks), and proliferating cell nuclear antigen (PCNA), together with upregulated Cdk kinase activities. This process is accompanied with multiple phosphorylation of retinoblastoma (Rb) protein at Cdk phosphorylation sites in neurons from the ischemic cortex. We further examined DNA synthesis by the incorporation of BrdU, a nucleotide analog that incorporates into newly synthesized DNA. Within 24-h of reperfusion after 60-min occlusion, substantial BrdU-positive neurons were observed in the ischemic cortex. Inhibition of Cdk4 activity during this ischemia/reperfusion is highly neuroprotective. These results suggest that ischemia/reperfusion cerebral damage induces signalings at the G1/S cell-cycle transition, and may constitute a critical step in the neuronal apoptotic pathway in ischemia/reperfusion induced neuronal damage.  相似文献   

19.
Liu Z  Liu Q  Cai H  Xu C  Liu G  Li Z 《Regulatory peptides》2011,171(1-3):19-25
Cerebral ischemia is one of the diseases that most compromise the human species. Therapeutic recovery of blood-brain barrier (BBB) disruption represents a novel promising approach to reduce brain injury after stroke. To determine the effects of calcitonin gene-related peptide (CGRP) on the BBB participate in stroke progression, rat cerebral ischemia reperfusion injury was induced by a 2-hour left transient middle cerebral artery occlusion (MCAO) using an intraluminal filament, followed by 46h of reperfusion. CGRP (1μg/ml) at the dose of 3μg/kg (i.p.) was administered at the beginning of reperfusion. Subsequently, 48h after MCAO, arterial blood pressure, infarct volume, water content, BBB permeability, BBB ultrastructure, levels of aquaporin-4 (AQP4) and its mRNA were evaluated. CGRP could reduce arterial blood pressure (P<0.001), infarct volume (P<0.05), cerebral edema (P<0.01), BBB permeability (P<0.05), AQP4 mRNA expression (P<0.05) and AQP4 protein expression (P<0.01). Furthermore, CGRP treatment improved ultrastructural damage of capillary endothelium cells and decreased the loss of the tight junction observed by transmission electronic microscopy (TEM) after 46h of reperfusion. Our findings show that CGRP significantly reduced postischemic increase of brain edema with a 2-hour therapeutic window in the transient model of focal cerebral ischemia. Moreover, it seems that at least part of the anti-edematous effects of CGRP is due to decrease of BBB disruption by improving ultrastructural damage of capillary endothelium cells, enhancing basal membrane, and inhibiting AQP4 and its mRNA over-expression. The data of the present study provide a new possible approach for acute stroke therapy by administration of CGRP.  相似文献   

20.
Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are c AMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion(t MCAO) was performed on Epac1-deficient(Epac1-/-) mice, Epac2-deficient(Epac2-/-) mice, and their wild type counterparts(Epac1+/+ and Epac2+/+). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After t MCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4(AQP4), glial fibrillary acidic protein(GFAP), peroxiredoxin 6(Prx6) were observed in ipsilateral retinae. Epac2-/- ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2+/+. However, Epac1-/- ipsilateral retinae displayed similar pathology as those in Epac1+/+ mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号