首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake and metabolism of the cytokinin benzyl adenine (BA) was compared in two lines of Petunia hybrida Vilm. differing in their shoot organogenic response. Leaf transfer experiments using shoot induction medium containing 4.4 micromolar BA showed that leaf explants from petunia line St40 required a shoot induction period of 6 to 10 days for commitment to shoot organogenesis; whereas leaf explants from petunia TLV1 required 12 to 28 days. The short induction period of petunia St40 and the higher organogenic response was positively associated with a threefold higher absorption of BA from the medium, an increased BA ribotide metabolite pool, the presence of BA within the explant during the shoot induction period, and the production of an unidentified metabolite C. However, the study of petunia TLV1 leaf explants showed that neither BA nor metabolite C are required during the shoot induction period for eventual shoot development. The longer shoot induction period of TLV1 was associated with low BA uptake during 24 days, a decreasing ribotide metabolite pool, the absence of benzyl adenosine triphosphate and metabolite C throughout the study, and the absence of BA within the explant during the shoot induction period. Differences in the shoot organogenic response of these related plant lines have been shown to be associated with differences in exogenous cytokinin uptake and the subsequent metabolism of that hormone.  相似文献   

2.
Ilumination did not affect the pathway of shoot regeneration at the cut edges of epicotyl explants of Troyer citrange (Moreira-Dias et al. 2000, 2001), but signigficantly affected the number of developed shoots and the response to exogenous cytokinins. Shoot regeneration at the apical end occurred through a direct organogenic pathway without callus formation. For explants incubated in the light, this regeneration did not require cytokinin addendum, but the number of shoots formed was significantly increased by benzyl adenine, but not by zeatin or kinetin. Incubation in the dark almost suppressed shoot formation at the apical end. The addition of benzyl adenine or kinetin, but not of zeatin, restored shoot formation in the dark to the value obtained in the light. At the basal end of the explants shoot regeneration occurred through an indirect organogenic pathway after the formation of a primary callus. In explants incubated in the light, callus formation and shoot growth was supported by a low (0.5–1 mg l−1) benzyl adenine concentration and by zeatin. Kinetin did not support callus growth. Shoot formation was higher in the presence of benzyl adenine (0.5–1 mg l−1) than of zeatin, but was inhibited by a high (5 mg l−1) benzyl adenine concentration. Incubation in the dark increased callus growth and shoot formation at the basal cut as compared to explants incubated in the light. The three cytokinins tested supported callus growth and shoot formation in the dark, zeatin being the most effective and kinetin the least. In terms of number of shoots developed, the optimum cytokinin addendum depended on the pathway of organogenesis and the conditions of incubation. The maximum number of shoots developed at the apical end was obtained when the incubation was performed in the light in the presence of benzyl adenine. At the basal end, the optimal conditions were incubation in the dark in the presence of zeatin. It was not always possible to define an optimal cytokinin concentration as the curve concentration/response varied from experiment to experiment, which seemed unrelated to the endogenous cytokinin concentration in the explants.  相似文献   

3.
Summary Tennessee coneflower [Echinacea tennesseensis (Beadle) Small] was regenerated from flower stalks, leaf sections from flowering plants, and hypocotyls and cotyledons from seedlings. Murashige and Skoog medium (MS) supplemented with naphthaleneacetic acid (NAA) at 0.54 μM and thidiazuron (TDZ) at 22.7 μM yielded the most shoots per leaf explant. NAA and 6-benzylaminopurine concentrations for optimal shoot regeneration from leaf, flower stalk, cotyledon and hypocotyl explants in MS media were 0.54 and 24.6μM, respectively. All explant types generated shoots; however, those derived from leaves and flower stalks produced the highest number of shoots per explant and highest percentage of explants with shoots. Explants cultured on media containing high levels of NAA (5.4–27 μM) formed calluses but no adventitious shoot. Leaf explants responded to a wider range of NAA concentrations than the other explant types but shoots generated from flower stalks grew the fastest. While all cytokinins tested increased the number of shoots per explant, the number of shoots in media containing TDZ was increased by nearly threefold. Regenerated shoots from all explant types cultured on MS medium supplemented with 0.25 μM indole-3-butyric acid initiated roots within 4 wk; NAA was not effective for root induction. All vernalized plantlets developed into plants that were morphologically identical to the source material.  相似文献   

4.
The influence of sugars and growth regulators on shoot and root growth of Dactylorhiza species was studied under in vitro conditions. The seedling development was stimulated with the application of glucose and sucrose at concentration of 10 g dm−3 each. The improvement of shoot growth rate and shoot length was enhanced by cytokinins N 6-(2-isopentenyl)adenine or N 6-benzyladenine and their combination with auxin indolebutyric acid (IBA). The root growth rate and root length of seedlings increased in the presence of IBA and α-naphthaleneacetic acid. Individual Dactylorhiza species showed statistically significant differences in shoot and root development depending on sugar and growth regulator combinations.  相似文献   

5.
For centuries Hypericum perforatum has been used in natural medicine. In the last decades, it has also attracted the attention of pharmaceutical industry due to its promising anti-depressant properties. The important factor in pharmaceutical application of plant material is its stable content of active compounds. Such stability requires standardized conditions of growth, e.g. an in vitro culture. Our aim was to establish a medium allowing for an effective regeneration of shoots from the standardized leaf explants in in vitro conditions. Cultures of the leaf explants carried out in darkness, on Murashige and Skoog agar medium, supplemented with auxins (2,4-dichlorophenoxyacetic acid, 2-metoxy-3,6-dichlorobenzoic acid, α-naphtaleneacetic acid, indole-3-acetic acid) and cytokinins (kinetin, N6-(benzyl)adenine, thidiazuron) resulted in callus formation. The callus produced roots on media containing indole-3-acetic acid or α-naphtaleneacetic acid alone. On media supplemented with auxins and cytokinins, indirect shoot organogenesis was also observed. The most efficient shoot formation was observed with 2.85 μM of indole-3-acetic acid and 4.44 μM of benzyladenine. Regenerated shoots were rooted on Murashige and Skoog without plant growth regulators medium or on a medium supplemented with indole-3-acetic acid. From a single leaf explant (one fifth of the leaf) after a month of the culture, 35 regenerated shoots were obtained (allowing for the formation of about 180 vegetative shoots per leaf). Successful multiplication of shoots from a standardized explant makes it possible to obtain a great quantity of uniform plant material for biotechnological purposes.  相似文献   

6.
Multiple shoots of Spilanthes acmella Murr. were induced from nodal buds of in vivo and in vitro seedlings on Murashige and Skoog (MS) medium containing 1.0 mg dm−3 6-benzyladenine (BA) and 0.1 mg dm−3 α-naphthalene-acetic acid (NAA). Adventitious shoots were successfully regenerated from the leaf explants derived from the above mentioned multiple shoots. The efficiency of shoot regeneration was tested in the MS medium containing BA, kinetin, or 2-isopentenyl adenine in combination with NAA, indole-3-acetic acid (IAA), or indole-3-butyric acid (IBA) and gibberellic acid. Maximum number of shoots per explant (20 ± 0.47) was recorded with 3.0 mg dm−3 BA and 1.0 mg dm−3 IAA. An anatomical study confirmed shoot regeneration via direct organogenesis. About 95 % of the in vitro shoots developed roots after transfer to half strength MS medium containing 1.0 mg dm−3 IBA. 95 % of the plantlets were successfully acclimatized and established in soil. The transplanted plantlets showed normal flowering without any morphological variation.  相似文献   

7.
Stem segments, axillary buds and leaves excised from established shoot cultures of Morus indica were soaked in MS liquid medium containing benzyladenine (0.5, 1, 2 mg/1) and were cultured subsequently on semi solid medium of the same composition. Numerous shoot buds differentiated from leaf and axillary buds but stem segments were unresponsive. The shoot buds on isolation and culture developed into plantlets. Callus tissues which developed at the base of the leaf explant upon subculture also differentiated numerous shoot buds.Abbreviations BA benzyl adenine - CM coconut milk - 2, 4-D 2, 4 dichlorophenoxy acetic acid - Kn kinetin - MS Murashige and Skoog - Z zeatin  相似文献   

8.
Summary A method has been developed for the induction of adventitious shoots from leaf tissue of Echinacea pallida with subsequent whole-plant regeneration. Proliferating callus and shoot cultures were derived from leaf tissue explants placed on Murashige and Skoog medium supplemented with 6-benzylaminopurine and naphthaleneacetic acid combinations. The optimum shoot regeneration frequency (63%) and number of shoots per explant (2.3 shoots per explant) was achieved using media supplemented with 26.6 μM 6-benzylaminopurine and 0.11 μM naphthaleneacetic acid. Rooting of regenerated shoot explants was successful on Murashige and Skoog medium, both with and without the addition of indole-3-butyric acid. All plantlets survived acclimatization, producing phenotypically normal plants in the greenhouse. This study demonstrates that leaf tissue of E. pallida is competent for adventitious shoot regeneration and establishes a useful method for the micropropagation of this important medicinal plant.  相似文献   

9.
Young shoot tips of species and hybrids from the Prunus section eucerasus contain catechin, epicatechin and flavolans (oligomeric flavans including biflavans). Prunus avium shoot segments, 2 mm in length, were excised from the elongating zone of growing shoots and cultured in vitro on a liquid Murashige and Skoog medium containing indolyl-3-acetic acid and benzyl adenine. Supplementation of the same medium with (+)-catechin and epicatechin resulted in apparent promotion of callus growth. This effect was greater under long day conditions than under continuous dark.  相似文献   

10.
Summary Triiodobenzoic acid (TIBA), an anti-auxin, was found to inhibit both shoot and root formation in cultured excised leaf explants of tobacco (Nicotiana tabacum L.). The shoot formation (SF) medium used required only exogenous cytokinin (N6-benzyladenine) and the root formation (RF) medium required both auxin (indole-3-butyric acid) and cytokinin (kinetin). By transferring the explants from SF or RF media to SF or RF media with TIBA (4.0×10−5 M), respectively or vice versa, at different times in culture, it was found that TIBA inhibition was at the time of meristemoid formation and after determination of organogenesis. This indicates that TIBA interfered with endogenous auxin involvement in organized cell division.  相似文献   

11.
Summary Protocols for both axillary bud proliferation and shoot organogenesis of Euphorbia pulchurrima Winter RoseTM were developed using terminal buds and leaf tissues. Greenhouse-grown terminal buds were placed on Murashige-Skoog (MS) basal medium supplemented with various concentrations of either benzlyaminopurine (BA) or thidiazuron (TDZ). Explants produced the greatest number of axillary buds on media containing between 2.2 and 8.8 μM BA. The number of explants that produced axillary buds increased with increasing BA concentration. TDZ at concentrations between 2.3 and 23.0 μM caused hyperhydricity of shoots and were not effective in promoting shoot proliferation. The most calluses and shoots were produced from leaf midvein sections from in vitro grown plants placed on the medium containing 8.8–13.3 μM BA and 17.1 μM indole-3-acetic acid (IAA) for 1 mo. before transferring to the medium containing only BA. Adventitious buds were produced only from red-pigmented callus, and explants that produced callus continued to produce adventitious shoots in the presence of IAA. Five-mo.-old shoots derived from shoot culture or organogenesis rooted readily in artificial soil with or without treatment with indolebutyric acid, and were acclimatized in the greenhouse.  相似文献   

12.
Kaur  R.  Sood  M.  Chander  S.  Mahajan  R.  Kumar  V.  Sharma  D.R. 《Plant Cell, Tissue and Organ Culture》1999,59(3):227-229
Valeriana jatamansi Jones is an important medicinal plant. This wild herb is being exploited for its roots and rhizomes which contain valepotriates, which are highly effective against leprosy. The aim of this study was to establish a practical method for rapid and large-scale multiplication of V. jatamansi by induction of shoot proliferation from shoot buds. The sterilized explants were established on solid medium supplemented with benzyl adenine alone or in combination with indole-acetic acid or naphthalene acetic acid. The buds cultured on nutrient medium supplemented with BA and IAA or NAA formed shoots, which after 3-4 weeks produced roots on the same medium. One hundred per cent survival was obtained on hardening and field establishment of well rooted shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

14.
This paper describes multiple shoot regeneration from leaf and nodal segments of a medicinally important herb Centella asiatica L. on Murashige and Skoog’s (MS) medium supplemented with a range of growth regulators. The highest number of multiple shoots was observed on MS augmented with 3.0 mg dm−3 N6-benzylaminopurine (BAP) and 0.05 mg dm−3 α-naphthaleneacetic acid (NAA). Leaf explant showed maximum percentage of cultures regenerating shoots (81.6 %), with the highest shoot number (8.3 shoots per explant) and the shoot length (2.1 cm) whereas, nodal explant showed less number of shoots with callus formation at the base cut end. Successive shoot cultures were established by repeatedly sub-culturing the original explant on a fresh medium. Rooting of in vitro raised shoots was best induced on half strength MS supplemented with 0.5 mg dm−3 indole-3-butyric acid (IBA) with highest percentage of shoot regenerating roots (76.8 %) with 3–4 roots per shoot. Plantlets were acclimated in Vermi-compost and eventually established in soil. Contents of chlorophyll, total sugars, reducing sugars and proteins were estimated in leaf tissue from both in vivo and in vitro raised plants. Chlorophyll content was higher in in vivo plants, whereas other three components were higher in in vitro plants.  相似文献   

15.
Portions of the shoot system from young light-grown pea (Pisum sativum L.) seedlings were excised and circumnutation studied using time-lapse cinematography. Removal of the youngest leaf or shoot tip as well as ringing the stem with 20 mM triiodobenzoic acid severely restricted circumnutation. Treating the stump of the excised leaf with lanolin containing 10?4 M indole-3-acetic acid or replacing the leaf with an artificial aluminum leaf both partially restored circumnutation. When the leaf was replaced with both auxin and an artificial leaf circumnutation continued at approximately the rate of the intact plant. This graphically shows the involvement of both auxin and gravitropism in circumnutation.  相似文献   

16.
A novel protocol for indirect shoot organogenesis of Dieffenbachia cv. Camouflage was established using leaf explants excised from in vitro shoot cultures. The frequency of callus formation reached 96% for explants cultured on Murashige and Skoog (1962) basal medium supplemented with 5 μM thidiazuron and 1 μM 2,4-dichlorophenozyacetic acid. The number of shoots regenerated was high, with up to 7.9 shoots produced per callus cultured on basal medium supplemented with 40 μM N 6-(Δ2-isopentenyl)adenine and 2 μM indole-3-acetic acid. Regenerated shoots rooted well in a soilless substrate, acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions. Somaclonal variations in leaf variegation, color, and morphology have been observed in regenerated plants.  相似文献   

17.
Ascorbic acid improves conversion of white spruce somatic embryos   总被引:7,自引:0,他引:7  
Summary The effects of exogenous applications of ascorbic acid on white spruce somatic embryogenesis were examined. Increasing concentrations of ascorbate (1 μM to 100 μM) in the germination medium enhanced somatic embryo conversion in a linear fashion. At the optimal ascorbate level (100 μM) the number of embryos able to undergo normal conversion, i.e., emergence of both root and shoot, increased from 34% (control) to 58%. The effect of ascorbate had a more pronounced effect on shoot growth than on root emergence; and at 100 μM ascorbate, the percentage of embryos able to produce new leaf primordia increased from 47% (control) to 79%. Root emergence increased slightly from 64% in the control embryos to 74% in the presence of ascorbic acid. The ascorbate-treated embryos were characterized by an enlarged apical region, presumably due to a larger number of leaf primordia produced, and by dark green leaves. When allowed to grow further, these embryos were able to develop into normal plantlets.  相似文献   

18.
Efficient plant regeneration systems both from shoot segments and via callus organogenesis were developed for Kosteletzkya pentacarpos (L.) Ledeb., a rare and endangered Eurasian species. In the experiments with existing meristems, factors affecting shoot proliferation, including explant type, i.e. decapitated and intact shoots, and plant growth regulators, indole-3-acetic acid or kinetin, were investigated. Shoot proliferation was significantly affected by the type of explant, the hormones and their interaction. The highest shoot multiplication rate was obtained from decapitated shoots. Increasing kinetin concentration promoted shoot elongation regardless of explant type. In intact shoots, shoot length was also affected by increasing auxin concentration, although this effect tends to decrease with higher concentration. Decapitated shoots were not responsive to the addition of auxin. Micropropagation through organogenesis from callus was also investigated. Calli were obtained from leaf, stem internode and root explants. Only the leaf-derived calli produced shoots and indole-3-acetic acid favoured increased numbers of shoots. A number of experiments were conducted for rooting of in vitro produced shoots. All of them induced high rooting frequency, the number and the length of roots being dependent on the strength of the basal medium. The use of 1–2 mg l−1 indole-3-butyric acid resulted in refining the optimal concentration for root elongation. The regenerated plants (70%) survived and flowered in their first vegetative period.  相似文献   

19.
Summary Cotyledonary node and leaf nodal explants excised from 14-d-old in vitro-grown seedlings of Albizia odoratissima were cultured on a Murashige and Skoog (MS) medium with different concentrations of 6-benzylaminopurine (BAP), N 6-(2-isopentenyl) adenine (2-iP) and kinetin, used either solely or in combinations. The highest frequency for shoot regeneration (82.5%), the maximum number of shoots per explant (6.9), and the maximum shoot length (2.55 cm) were obtained from cotyledonary node explants cultured on a MS medium containing 10 μM BAP and 10 μM 2-iP with 30 gl−1 sucrose. Successful rooting was achieved by placing the microshoots on MS medium with 25 μM indole-3-butyric acid (IBA) for 24h first, then transferring to the same medium without IBA. Of the various substrates tested, vermiculite was best for plant acclimatization, in which 75% of plants survived.  相似文献   

20.
Summary Factors affecting in vitro shoot production and regeneration of Cercis yunnanensis Hu et Cheng were investigated by comparing various growth regulators and explant types. For optimum shoot production from axillary buds, Murashige and Skoog (MS) media containing 6-benzyladenine, either alone or in combination with a low concentration of thidiazuron, resulted in the greatest number of shoots formed per explant (>3). Explants (2 mm long) containing one axillary bud placed in directcontact with the medium yielded the most shoots per bud (1.6) when grown on growth regulator-free medium. Root formation on 70–80% of shoot explants was accomplished using either indole-3-butyric acid or α-naphthaleneacetic acid in the medium, with significantly more roots formed on explants possessing and apical bud than those without the bud. Direct shoot organogenesis from leaf explants occurred on MS medium containing 10–30 μM thidiazuron, with up to 42% of leaf explants producing shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号