首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabolic interactions between fatty acid oxidation and gluconeogenesis were investigated in vivo in 16h-old newborn rats under various nutritional states. As the newborn rat has no white adipose tissue, starvation from birth induces a low rate of hepatic fatty acid oxidation. Hepatic gluconeogenesis in inhibited in the starved newborn rat when compared with the suckling rat, which receives fatty acids through the milk, at the steps catalysed by pyruvate carboxylase and glyceraldehyde 3-phosphate dehydrogenase. These inhibitions are rapidly reversed by triacylglycerol feeding. Inhibition of fatty acid oxidation by pent-4-enoate in the suckling animal mimics the effect of starvation on the pattern of hepatic gluconeogenic metabolites. It is concluded that, in the newborn rat in vivo, hepatic fatty acids oxidation can increase the gluconeogenic flux by providing the acetyl-CoA necessary for the reaction catalysed by pyruvate carboxylase and the reducing equivalents (NADH) to displace the reversible reaction catalysed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis.  相似文献   

2.
Ketogenesis from endogenous fatty acids or from exogenous octanoate has been studied in isolated hepatocytes from fetal. 24-h-old newborn and adult rabbit. In fed adult rabbits, endogenous ketogenesis is low and increases sixfold in the presence of 2 mM octanoate. At birth, endogenous ketogenesis is low and markedly increases 24 h after birth but, in both cases, the addition of 2 mM octanoate does not increase the rates of ketone body production. Hepatocytes isolated from 24-h-old newborn or fed adult rabbits and incubated with [1-14C]octanoate show a preferential channeling of fatty acid into oxidation (84-92% of octanoate metabolized). In contrast, esterification represents 43% of the amount of octanoate metabolized at birth. Chromatographic analysis of labelled triacylglycerols shows that 76 +/- 2% of labelled fatty acids are identified as octanoate and all of the radioactivity in the octanoate peak is due to the carboxyl carbon. In hepatocytes from term fetus, the low capacity for octanoate oxidation is associated with a high capacity for esterification, whatever the octanoate concentration in the medium. Octanoate activated to octanoyl-CoA in the cytosol of fetal hepatocyte is not oxidized in the mitochondria since carnitine acyltransferase I has a low activity at birth in the rabbit. This suggests that only a part of the octanoate pool is activated outside the mitochondria. Factors involved in the direct esterification of octanoate into triacylglycerols in term fetal hepatocytes are discussed.  相似文献   

3.
Dairy cows experience an increased demand for glucose to support milk production. However, negative energy balance is a common condition in peripartum cows. In response, fat mobilization provides non-esterified fatty acids (NEFAs) for oxidation in the liver to generate ATP. To investigate the effects of NEFAs on gluconeogenesis, the expression and enzyme activity of pyruvate carboxylase (PC) and phosphoenolpyruvate carboxylase (PEPCK) in cultured bovine hepatocytes were evaluated by quantitative polymerase chain reaction and spectrophotometry, respectively. The results showed that PC and PEPCK mRNA levels were marked decreased when the NEFAs concentrations exceeded 0.5 and 1.5?mmol/l, respectively. The PC and PEPCK enzyme activity showed significantly decreased when the NEFAs concentrations exceeded 1.5 and 0.5?mmol/l, respectively. These findings indicate that high circulating levels of NEFAs inhibit hepatocyte gluconeogenesis, thereby promoting negative energy balance.  相似文献   

4.
5.
In the pig, the growth of intestinal mucosa is very intense after birth. Since the polyamines are key elements affecting cell proliferation and differentiation, the present work was undertaken in order to know whether this hypertrophy is associated with an adaptation of polyamine metabolism. Villus enterocytes isolated from pig immediately after birth or 2 days later were found to contain similar amounts of putrescine, spermidine and spermine, i.e., 0.23; 0.41 and 1.24 nmol/10(6) cells, respectively. At birth, despite a relatively high ODC activity, putrescine synthesis from 1 mM L-arginine or 2 mM L-glutamine was very low in isolated enterocytes (6.4 +/- 3.8 pmol/10(6) cells per 30 min), while spermidine and spermine production were not detectable. This could be explained by a very low L-ornithine generation from both amino acids and to an inhibitory effect of polyamines on ODC activity. Two days later, polyamine synthesis from L-arginine remained undetectable despite a higher L-ornithine generation. This was concomitant with a dramatic fall in ODC activity. At both stages, enterocytes were able to take up polyamines from the extracellular medium in a temperature-dependent manner. It is concluded that de-novo synthesis of polyamines from L-arginine or L-glutamine does not play a significant role in the control of polyamine content of pig enterocytes during the postnatal period. In contrast, polyamine uptake by enterocytes would contribute to maintain a steady-state polyamine content during this period.  相似文献   

6.
Maternal undernutrition during late gestation accelerates body fat mobilization to provide more energy for foetal growth and development, which unbalances metabolic homeostasis and results in serious lipid metabolism disorder. However, detailed regulatory mechanisms are poorly understood. Here, a sheep model was used to explore the regulatory role of PPARA/RXRA signalling in hepatic lipid metabolism in undernutrition based on RNA sequencing and cell experiments. KOG function classification showed that lipid transport and metabolism was markedly altered in an undernourished model. In detail, when compared with the controls, fatty acid transport and oxidation and triglyceride metabolism were up-regulated in an undernourished model, while fatty acid synthesis, steroid synthesis, and phospholipid metabolism were down-regulated. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis demonstrated that PPARA/RXRA signalling pathway was altered. Moreover, PPARA signalling associated genes were positively correlated with hepatic non-esterified fatty acid (NEFA) levels, while retinol metabolism associated genes were negatively correlated with blood beta-hydroxybutyric acid (BHBA) levels. Results of primary hepatocytes showed that NEFAs could activate PPARA signalling and facilitate fatty acid oxidation (FAO) and ketogenesis, while BHBA could inhibit RXRA signalling and repress FAO and ketogenesis. Excessively accumulated NEFAs in hepatocytes promoted triglyceride synthesis. Furthermore, activation of PPARA/RXRA signalling by WY14643 and 9-cis-retinoic acid could enhance FAO and ketogenesis and reduce NEFAs accumulation and esterification. Our findings elucidate the regulatory mechanisms of NEFAs and BHBA on lipid metabolism as well as the potential role of the PPARA/RXRA signalling pathway in hepatic lipid metabolism, which may contribute to exploring new strategies to maintain lipid metabolic homeostasis in human beings.  相似文献   

7.
This study examines the metabolic fate of total and individual yolk fatty acids (FA) during the embryonic development of the king penguin, a seabird characterized by prolonged incubation (53 days) and hatching (3 days) periods, and a high n-3/n-6 polyunsaturated FA ratio in the egg. Of the approximately 15 g of total FA initially present in the egg lipid, 87% was transferred to the embryo by the time of hatching, the remaining 13% being present in the internalized yolk sac of the chick. During the whole incubation, 83% of the transferred FA was oxidized for energy, with only 17% incorporated into embryo lipids. Prehatching (days 0-49), the fat stores (triacylglycerol) accounted for 58% of the total FA incorporated into embryo lipid. During hatching (days 49-53), 40% of the FA of the fat stores was mobilized, the mobilization of individual FA being nonselective. At hatch, 53% of the arachidonic acid (20:4n-6) of the initial yolk had been incorporated into embryo lipid compared with only 15% of the total FA and 17-24% of the various n-3 polyunsaturated FA. Similarly, only 32% of the yolk's initial content of 20:4n-6 was oxidized for energy during development compared with 72% of the total FA and 58-66% of the n-3 polyunsaturated FA. The high partitioning of yolk FA toward oxidization and the intense mobilization of fat store FA during hatching most likely reflect the high energy cost of the long incubation and hatching periods of the king penguin. The preferential partitioning of 20:4n-6 into the structural lipid of the embryo in the face of its low content in the yolk may reflect the important roles of this FA in tissue function.  相似文献   

8.
Freshly isolated mitochondria from brown adipose tissue are uncoupled with respect to oxidative phosphorylation. When these mitochondria oxidize[U-minus 14-C] palmitic acid in the presence of malate the label is found in three major fractions. Polar lipids, rich in acyl carnitines, remain in the mitochondrial pellet. A large fraction, rich in tricarboxylic acid cycle intermediates, is exported to the suspending medium, as is a third, smaller fraction containing ketone bodies and beta-hydroxy-beta-methylglutaric acid. Prevention of oxygen uptake by addition of rotenone or antimycin prevents accumulation of cycle intermediates, increases formation of acyl carnitiness and increases beta-hydroxybutyrate relative to acetoacetate. Rotenone and antimycin do not prevent formation of labeled phosphatidylcholine. Partial suppression of oxygen uptake by benzene-1,2,3-tricarboxylic acid, amytal or malonate leads to results between these extremes. Addition of lysophosphatidylcholine had minimal effects on export of cycle intermediates, but increased formation of ketone bodies and particularly of acyl carnitines. The significance of lysophosphatidylcholine as an endogenous modifier of mitochondrial metabolism is discussed.  相似文献   

9.
Mitochondrial and peroxisomal fatty acid oxidation were compared in whole liver homogenates. Oxidation of 0.2 mM palmitoyl-CoA or oleate by mitochondria increased rapidly with increasing molar substrate:albumin ratios and became saturated at ratios below 3, while peroxisomal oxidation increased more slowly and continued to rise to reach maximal activity in the absence of albumin. Under the latter condition mitochondrial oxidation was severely depressed. In homogenates from normal liver peroxisomal oxidation was lower than mitochondrial oxidation at all ratios tested except when albumin was absent. In contrast with mitochondrial oxidation, peroxisomal oxidation did not produce ketones, was cyanide-insensitive, was not dependent on carnitine, and was not inhibited by (+)-octanoylcarnitine, malonyl-CoA and 4-pentenoate. Mitochondrial oxidation was inhibited by CoASH concentrations that were optimal for peroxisomal oxidation. In the presence of albumin, peroxisomal oxidation was stimulated by Triton X-100 but unaffected by freeze-thawing; both treatments suppressed mitochondrial oxidation. Clofibrate treatment increased mitochondrial and peroxisomal oxidation 2- and 6- to 8-fold, respectively. Peroxisomal oxidation remained unchanged in starvation and diabetes. Fatty acid oxidation was severely depressed by cyanide and (+)-octanoylcarnitine in hepatocytes from normal rats. Hepatocytes from clofibrate-treated rats, which displayed a 3- to 4-fold increase in fatty acid oxidation, were less inhibited by (+)-octanoylcarnitine. Hydrogen peroxide production was severalfold higher in hepatocytes from treated animals oxidizing fatty acids than in control hepatocytes. Assuming that all H2O2 produced during fatty acid oxidation was due to peroxisomal oxidation, it was calculated that the contribution of the peroxisomes to fatty acid oxidation was less than 10% both in cells from control and clofibrate-treated animals.  相似文献   

10.
The development of fatty acid metabolism was studied in isolated hepatocytes from newborn rats. Ketone-body production from oleate is increased 6-fold between 0 and 16 h after birth. This increase is related to an enhanced beta-oxidation rather than to a channeling of acetyl-CoA from the tricarboxylic acid cycle to ketone-body synthesis. The increase in oleate oxidation is not related to a decreased esterification rate, as the latter is already low at birth and does not decrease further. At birth, lipogenic rate is 2-3-fold lower than in fed adult rats and it decreases to undetectable values in 16 h-old rats. A 90% inhibition of lipogenesis in hepatocytes of newborn rats (0 h) by glucagon and 5-(tetradecyloxy)-2-furoic acid does not lead to an increased oxidation of non-esterified fatty acids. This suggests that the inverse relationship between lipogenesis and ketogenesis in the starved newborn rat is not responsible for the switch-on of fatty acid oxidation at birth. Moreover, ketogenesis from octanoate, a medium-chain fatty acid the oxidation of which is independent of carnitine acyltransferase, follows the same developmental pattern at birth as that from oleate.  相似文献   

11.
12.
The effects of D-glyceraldehyde on the hepatocyte contents of various metabolites were examined and compared with the effects of fructose, glycerol and dihydroxyacetone, which all enter the glycolytic/gluconeogenic pathways at the triose phosphate level. D-Glyceraldehyde (10 MM) caused a substantial depletion of hepatocyte ATP, as did equimolar concentrations of fructose and glycerol. D-Glyceraldehyde and fructose each caused a 2-fold increase in fructose 1,6-bisphosphate and the accumulation of millimolar quantities of fructose 1-phosphate in the cells. D-Glyceraldehyde caused an increase in the glycerol 3-phosphate content and a decrease in the dihydroxyacetone phosphate content, whereas dihydroxyacetone increased the content of both metabolites. The increase in the [glycerol 3-phosphate]/[dihydroxyacetone phosphate] ratio caused by D-glyceraldehyde was not accompanied by a change in the cytoplasmic [NAD+]/[NADH] ratio, as indicated by the unchanged [lactate]/[pyruvate] ratio. The accumulation of fructose 1-phosphate from D-glyceraldehyde and dihydroxyacetone phosphate in the hepatocyte can account for the depletion of the intracellular content of the latter. Presumably ATP is depleted as the result of the accumulation of millimolar amounts of a phosphorylated intermediate, as is the case with fructose and glycerol. It is suggested that the accumulation of fructose 1-phosphate during hepatic fructose metabolism is the result of a temporary increase in the D-glyceraldehyde concentration because of the high rate of fructose phosphorylation compared with triokinase activity. The equilibrium constant of aldolase favours the formation and thus the accumulation of fructose 1-phosphate.  相似文献   

13.
In hepatocytes from 1-day-old rats, active gluconeogenesis occurs in parallel with active ketogenesis, although the carbon atoms of non-esterified fatty acids do not participate in glucose synthesis. Once a significant ketogenesis is established, a further increase does not enhance gluconeogenesis. Indeed, octanoate is more ketogenic than oleate, but stimulates gluconeogenesis to a similar extent.  相似文献   

14.
15.
Gas chromatography analysis with the use of an electron captured detector including preparation of the halogen-substituted derivatives of fatty acids is a useful tool for the detection of lipid peroxidation products both in vitro and in vivo. This technique was applied to determine the content of fatty acid oxy-derivatives in lipid samples of transparent and completely opaque human lenses. At the stage of mature cataract a significantly increased level of oxyproducts was observed in the lens lipid fraction. It was concluded that accumulation of polar oxygroups in the lipid bilayer of plasma membranes of lens fibres is a plausible cause of their damage in cataracts.  相似文献   

16.
Ammonia is present at high concentration in the colon lumen and is considered a colon cancer suspect. Furthermore, ammonia usually eliminated by the liver in the ornithine cycle is considered highly toxic to cerebral function when present in excess in the blood plasma. Therefore, the metabolic pathways involved in ammonia metabolism in colonocytes were studied in the present study. Rat colonocytes were found equipped with low carbamoylphosphate synthase I activity, high ornithine carbamoyltransferase and arginase activities and low argininosuccinate synthase activity. High (10 and 50 mmol/l) NH4Cl concentrations but not low concentrations (1 and 5 mmol/l) were found able to increase respectively 3- and 10-fold the conversion of radioactive L-arginine to L-citrulline. In contrast, very low capacity for L-citrulline conversion to L-arginine is found in colonocytes. It is concluded that an incomplete ornithine cycle is operative in colonocytes which results in ammonia stimulated L-citrulline production. The contribution of this metabolic pathway in relation to ammonia detoxication by colonocytes is discussed.  相似文献   

17.
Isolated hepatocytes from fasted rats were used to study the effects of lactate on palmitate metabolism. Lactate was found to stimulate fatty acid esterification and citric acid cycle oxidation and to inhibit ketone body synthesis. These effects of lactate were largely maintained when gluconeogenesis was inhibited with either quinolinate or perfluorosuccinate, but were overcome by alpha-cyano-4-hydroxycinnamate. However, the responses of hepatocytes to lactate could be restored in the presence of alpha-cyano-4-hydroxycinnamate by the further addition of propionate. The stimulation of triacylglycerol synthesis by lactate was not associated with an increase in the concentration of glycerol 3-phosphate. Rather, there was a correlation between flux through the citric acid cycle and the rate of triacylglycerol synthesis. In all instances reduction of ketone body formation in the presence of lactate was accompanied by a stimulation of citric acid cycle oxidation.  相似文献   

18.
Addition of fatty acids to isolated hepatocytes raised respiration rate by 92% and raised mitochondrial membrane potential (delta psi m) in situ from 155 to 162 mV suggesting that the increased fuel supply had a greater effect on respiration rate than any increases in processes that consumed mitochondrial protonmotive force (delta p). The relationship between delta psi m and respiration rate was changed by addition of fatty acids or lactate, showing that there was also stimulation of delta p-consuming reactions. In the presence of oligomycin the relationship between delta psi m and respiration rate was unaffected by substrate addition, showing that the kinetics of delta p consumption by the H+ leak across the mitochondrial inner membrane were unchanged. The stimulation of delta p consumers by fatty acids therefore must be in the pathways of ATP synthesis and turnover. Inhibition of several candidate ATP-consuming reactions had little effect on basal or fatty acid-stimulated respiration, and the nature of the ATP turnover reactions in hepatocytes remains speculative. We conclude that fatty acids (and other substrates) stimulate respiration in hepatocytes in two distinct ways. They provide substrate for the electron transport chain, raising delta p and increasing the non-ohmic proton leak across the mitochondrial inner membrane and the rate of oxygen consumption. They also directly stimulate an unidentified delta p-consuming reaction in the cytoplasm. They do not work by uncoupling or by stimulation of intramitochondrial ATP-turnover reactions.  相似文献   

19.
Fatty acid metabolism and oxidation capacity in the placenta, which likely affects the rate and composition of lipid delivered to the fetus remains poorly understood. Long chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are critical for fetal growth and brain development. We determined the impact of maternal obesity on placental fatty acid oxidation, esterification and transport capacity by measuring PhosphatidylCholine (PC) and LysoPhosphatidylCholine (LPC) containing DHA by mass spectrometry in mother-placenta-baby triads as well as placental free carnitine and acylcarnitine metabolites in women with normal and obese pre-pregnancy BMI. Placental protein expression of enzymes involved in beta-oxidation and esterification pathways, MFSD2a (lysophosphatidylcholine transporter) and OCTN2 (carnitine transporter) expression in syncytiotrophoblast microvillous (MVM) and basal (BM) membranes were determined by Western Blot. Maternal obesity was associated with decreased umbilical cord plasma DHA in LPC and PC fractions in male, but not female, fetuses. Basal membrane MFSD2a protein expression was increased in placenta of males of obese mothers. In female placentas, despite an increased MVM OCTN2 expression, maternal obesity was associated with a reduced MUFA-carnitine levels and increased esterification enzymes. We speculate that lower DHA-PL in fetal circulation of male offspring of obese mothers, despite a significant increase in transporter expression for LPC-DHA, may lead to low DHA needed for brain development contributing to neurological consequences that are more prevalent in male children. Female placentas likely have reduced beta-oxidation capacity and appear to store FA through greater placental esterification, suggesting impaired placenta function and lipid transfer in female placentas of obese mothers.  相似文献   

20.
Conjugated linoleic acids (CLAs) are geometric and positional isomers of linoleic acid (LA) that promote growth, alter glucose metabolism and decrease body fat in growing animals, although the mechanisms are poorly understood. A study was conducted to elucidate the effects of CLA on glucose metabolism, triglyceride (TG) synthesis and IGF-1 synthesis in primary culture of porcine hepatocytes. In addition, hormonal regulation of TG and IGF-1 synthesis was addressed. Hepatocytes were isolated from piglets (n = 5, 16.0 ± 1.98 kg average body weight) by collagenase perfusion and seeded into collagen-coated T-25 flasks. Hepatocytes were cultured in William's E containing dexamethasone (10-8 and 10-7 M), insulin (10 and 100 ng/ml), glucagon (0 and 100 ng/ml) and CLA (1 : 1 mixture of cis-9, trans-11 and trans-10, cis-12 CLA, 0.05 and 0.10 mM) or LA (0.05 and 0.10 mM). Addition of CLA decreased gluconeogenesis (P < 0.05), whereas glycogen synthesis and degradation, TG synthesis and IGF-1 synthesis were not affected compared with LA. Increased concentration of fatty acids in the media decreased IGF-1 production (P < 0.001) and glycogen synthesis (P < 0.01), and increased gluconeogenesis (P < 0.001) and TG synthesis (P < 0.001). IGF-1 synthesis increased (P < 0.001) and TG synthesis decreased (P < 0.001) as dexamethasone concentration in the media rose. High insulin/glucagon increased TG synthesis. These results indicate that TG synthesis in porcine hepatocytes is hormonally regulated so that dexamethasone decreases and insulin/glucagon increases it. In addition, CLA decreases hepatic glucose production through decreased gluconeogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号