首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with l-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of l-arginine, N(omega)-hydroxy-l-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS-like protein from a pathogenic bacterium opens up avenues for further studies in understanding the importance of this protein in pathogenicity.  相似文献   

2.
Molecular dynamics simulations have been performed on three phenylimidazole inhibitor complexes ofP450 cam, utilizing the X-ray structures and the AMBER suite of programs. Compared to their corresponding optimized X-ray structures, very similar features were observed for the 1-phenylimidazole (1-PI) and 2-phenylimidazole (2-PI) complexes during a 100 ps MD simulation. The 1-PI inhibitor binds as a Type II complex with the imidazole nitrogen as a ligand of the heme iron. Analysis of the inhibitor-enzyme interctions during the MD simulations reveals that electrostatic interactions of the imidazole with the heme and van der Waals interactions of the phenyl ring with nearby hydrophobic residues are dominant. By contrast, 2-PI binds as a Type I inhibitor in the substrate binding pocket, but not as a ligand of the iron. The interactions of this inhibitor are qualitatively different from that of the Type II 1-PI, being mainly electrostatic/H-bonding interactions with a bound water and polar residues. Although the third compound, 4-PI, in common with 1-PI, also binds as a Type II inhibitor, with one nitrogen of the imidazole as a ligand to the iron, the MD average binding orientation deviates significantly from the X-ray structure. The most important changes observed include: (1) the rotation of the imidazole ring of this inhibitor by about 90° to enhance electrostatic interactions of the imidazole NH group with the carbonyl group of LEU244, and (2) the rotation of the carbonyl group of ASP251 to form a H-bond with VAL254. An analysis of the H-bonding network surrounding this substrate in the optimized crystal structure revealed that there is no H-bonding partner either for the free polar NH group in the imidazole ring of 4-phenylimidazole or for the polar carbonyl group of the nearby ASP251 residue. The deviation of the dynamically averaged inhibitor-enzyme structure of the 4-PI complex from the optimized crystal structure can therefore be rationalized as a consequence of the optimization of the electrostatic interactions among the polar groups.  相似文献   

3.
The unicellular Tetrahymena enzymatically split the synthetic phosphodiester, 4-methylum-belliferyl phosphocoline substrate. The enzyme activity was completely blocked in vitro and drastically inhibited in vivo by G-protein activating fluorides (NaF; AlF4 and BeF3 ). The phospholipase A2 inhibitor, quinacrine, and the protein phosphatase inhibitor, neomycin, inhibited the enzyme activity in vitro and activated it in vivo. Another phospholipase A2 inhibitor 4-bromo phenacyl bromide was ineffective in vivo and in vitro alike, as well as the cyclooxygenase inhibitor indomethacin. Results of these experiments indicate that some treatments could be specific for a well defined activity (e.g., phospholipase A2, G-protein) but subject to influence by other enzymes (e.g., phospholipase C, sphingomyelinase). The experiments call attention to the differences in the results of the in vivo and in vitro studies.  相似文献   

4.
The amino acid at position 51 in the cytochrome c 6 family is responsible for modulating over 100 mV of heme midpoint redox potential. As part of the present work, the X-ray structure of the imidazole adduct of the photosynthetic cytochrome c 6 Q51V variant from Phormidium laminosum has been determined. The structure reveals the axial Met ligand is dissociated from the heme iron but remains inside the heme pocket and the Ω-loop housing the Met ligand is stabilized through polar interactions with the imidazole and heme propionate-6. The latter is possible owing to a 180° rotation of both heme propionates upon imidazole binding. From equilibrium and kinetic studies, a Val residue at position 51 increases the stability of the Fe–S(Met) interaction and also affects the dynamics associated with imidazole binding. In this respect, the k obs for imidazole binding to Arabidopsis thaliana cytochrome c 6A, which has a Val at the position equivalent to position 51 in photosynthetic cytochrome c 6, was found to be independent of imidazole concentration, indicating that the binding process is limited by the Met dissociation rate constant (about 1 s−1). For the cytochrome c 6 Q51V variant, imidazole binding was suppressed in comparison with the wild-type protein and the V52Q variant of cytochrome c 6A was found to bind imidazole readily. We conclude that the residue type at position 51/52 in the cytochrome c 6 family is additionally responsible for tuning the stability of the heme iron–Met bond and the dynamic properties of the ferric protein fold associated with endogenous ligand binding.  相似文献   

5.
Zhu Y  Silverman RB 《Biochemistry》2008,47(8):2231-2243
Despite the essential biological importance of reactions that involve heme, mechanisms of heme reactions in enzymes like nitric oxide synthase (NOS), heme oxygenase (HO), and cytochrome P450s (CYP450s) are still not well-understood. This Perspective on NOS, HO, and CYP450 mechanisms is written from the point of view of the heme chemistry. Steps in the classical heme catalytic cycle are discussed based on the specific environment within each of these enzymes. Elucidation of the mechanisms of NOS inactivation by some substrate analogues provides important mechanistic clues to the NOS catalytic mechanism. On the basis of mechanistic studies of NOS inactivation by amidine analogues of l-arginine and other previous mechanistic results, a new mechanism for NOS-catalyzed l-arginine NG-hydroxylation (the first half of the catalytic reaction) is proposed in this Perspective. The key step in the second half of the NOS catalytic reaction, the internal electron transfer between the substrate and heme, is discussed on the basis of mechanistic results of NOS inactivation by NG-allyl-l-arginine and the structures of the substrate intermediates. Elucidation of the mechanism of NOS inactivation by amidines, which leads to heme degradation, also provides important mechanistic implications for heme oxygenase-catalyzed heme catabolism. Focusing on the meso-hydroxylation step during inactivation of NOS by amidines as well as the HO-catalyzed reaction, the essential nature of the heme-oxygen species responsible for porphyrin meso-hydroxylation is discussed. Finally, on the basis of the proposed heme degradation mechanism during NOS inactivation and the HO-catalyzed reaction, the mechanism for the formation of the monooxygenated heme species in P450-catalyzed reactions is discussed.  相似文献   

6.
The proximal ligand of thiolate-coordinated heme proteins is crucial for the activation of the oxygen molecule and hydroxylation of substrates. In nitric oxide synthases (NOSs), the heme axial cysteine ligand forms a hydrogen bond to the side chain indole nitrogen of a tryptophan residue. Resonance Raman spectroscopy was used to probe W56F and W56Y variants of the NOS of Staphylococcus aureus (saNOS) and the analogous W180 variants of the endothelial NOS oxygenase domain (eNOSox). We show that the variants displayed lower νFe-NO and νFe-CO frequencies indicating that these mutations increased the electron density on the axial cysteine in their FeIIINO and FeIICO complexes. We also show by UV-visible spectroscopy that the FeIICO complexes of the variants displayed a red-shifted Soret optical transition in addition to the lower νFe-CO thus establishing that these properties are sensitive indicators of the modulation of the basicity of the axial cysteine. We infer, based on its spectroscopic properties, that ferrous eNOSox W180Y saturated with l-arginine and tetrahydrobiopterin forms a tyrosine-cysteine hydrogen bond when bound to CO. Evidence for such a hydrogen bond was not obtained for the FeIIINO protein nor for the analogous saNOS variant. These mutations reveal interesting differences in the response of NOS isotypes to analogous mutations at conserved residues and clearly show that the heme-Fe to cysteine σ bond is modulated by the Cys-Trp hydrogen bond in NOSs. These studies serve as a basis to gain information on the role played by this hydrogen bond in oxygen activation in this class of enzymes.  相似文献   

7.
Chlorite dismutase (Cld) is a heme enzyme capable of rapidly and selectively decomposing chlorite (ClO2 ) to Cl and O2. The ability of Cld to promote O2 formation from ClO2 is unusual. Heme enzymes generally utilize ClO2 as an oxidant for reactions such as oxygen atom transfer to, or halogenation of, a second substrate. The X-ray crystal structure of Dechloromonas aromatica Cld co-crystallized with the substrate analogue nitrite (NO2 ) was determined to investigate features responsible for this novel reactivity. The enzyme active site contains a single b-type heme coordinated by a proximal histidine residue. Structural analysis identified a glutamate residue hydrogen-bonded to the heme proximal histidine that may stabilize reactive heme species. A solvent-exposed arginine residue likely gates substrate entry to a tightly confined distal pocket. On the basis of the proposed mechanism of Cld, initial reaction of ClO2 within the distal pocket generates hypochlorite (ClO) and a compound I intermediate. The sterically restrictive distal pocket probably facilitates the rapid rebound of ClO with compound I forming the Cl and O2 products. Common to other heme enzymes, Cld is inactivated after a finite number of turnovers, potentially via the observed formation of an off-pathway tryptophanyl radical species through electron migration to compound I. Three tryptophan residues of Cld have been identified as candidates for this off-pathway radical. Finally, a juxtaposition of hydrophobic residues between the distal pocket and the enzyme surface suggests O2 may have a preferential direction for exiting the active site.  相似文献   

8.
Kim EY  Shin KM  Jang S  Oh S 《Neurochemical research》2004,29(12):2221-2229
In the present study, we have investigated the effects of prolonged inhibition of nitric oxide synthase (NOS) by infusion of neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI), to examine modulation of NMDA and GABAA receptor binding in rat brain. The duration of sleeping time was significantly increased by the pre-treatment with 7-NI (100 mg/kg) 30 min before pentobarbital (40 mg/kg) treatment in rats. However, the duration of pentobarbital-induced sleep was shortened by the prolonged infusion of 7-NI into cerebroventricle for 7 days. We have investigated the effect of NOS inhibitor on NMDA and GABAA receptor binding characteristics in discrete areas of brain regions by using autoradiographic techniques. The GABAA receptors were analyzed by quantitative autoradiography using [3H]muscimol and [3H]flunitrazepam binding, and NMDA receptor binding was analyzed by using [3H]MK-801 binding in rat brain slices. Rats were infused with 7-NI (500 pmol/10 l/ h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps. The levels of [3H]muscimol were markedly elevated in cortex, caudate putamen, and thalamus while the levels of [3H]flunitrazepam binding were only elevated in cerebellum by NOS inhibitor. However, there was no change in the level of [3H]MK-801 binding except decreasing in the thalamus. These results show that the prolonged inhibition of NOS by 7-NI-infusion highly elevates [3H]muscimol binding in a region-specific manner and decreases the pentobarbital-induced sleep.  相似文献   

9.
The presence of nitric oxide synthase (EC 1.14.23 NOS) activity is demonstrated in the tropical marine cnidarian Aiptasia pallida (Verrill). Enzyme activity was assayed by measuring the conversion of [3H]arginine to [3H]citrulline. Optimal NOS activity was found to require NADPH. Activity was inhibited by the competitive NOS inhibitor NG-methyl- -arginine ( -NMA), but not the arginase inhibitors -valine and -ornithine. NOS activity was predominantly cytosolic, and was characterised by a Km for arginine of 19.05 μM and a Vmax of 2.96 pmol/min per μg protein. Histochemical localisation of NOS activity using NADPH diaphorase staining showed the enzyme to be predominantly present in the epidermal cells and at the extremities of the mesoglea. These results provide a preliminary biochemical characterisation and histochemical localisation of NOS activity in A. pallida, an ecologically important sentinel species in tropical marine ecosystems.  相似文献   

10.
Genome sequencing has shown the presence of genes coding for NO-synthase (NOS)-like proteins in bacteria. The roles and properties of these proteins remain unclear. UV-visible spectroscopy was used to characterize the recombinant NOS-like protein from Bacillus subtilis (bsNOS) in its ferric and ferrous states in the presence of various FeIII- and FeII-heme-ligands and of a series of l-arginine (l-arg) analogs. BsNOS exhibited several spectroscopic and binding properties in common with Bacillus anthracis NOS (baNOS) that were clearly different from those of tetrahydrobiopterin (H4B)-free mammalian NOS oxygenase domains (mNOSoxys) and of Staphylococcus aureus NOS (saNOS). Interestingly, bsNOS and baNOS that do not contain H4B exhibited properties much closer to those of H4B-containing mNOSoxys. Moreover, bsNOS was found to efficiently catalyze the oxidation of l-arginine into l-citrulline by H2O2, whereas H4B-free mNOSoxys exhibited low activities for this reaction.  相似文献   

11.
Nitric oxide (NO) release from nitric oxide synthases (NOSs) depends on the dissociation of a ferric heme-NO product complex (FeIIINO) that forms immediately after NO is made in the heme pocket. The NOS-like enzyme of Bacillus subtilis (bsNOS) has 10-20 fold slower FeIIINO dissociation rate (kd) and NO association rate (kon) compared to mammalian NOS counterparts. We previously showed that an Ile for Val substitution at the opening of the heme pocket in bsNOS contributes to these differences. The complementary mutation in mouse inducible NOS oxygenase domain (Val346Ile) decreased the NO kon and kd by 8 and 3-fold, respectively, compared to wild-type iNOSoxy, and also slowed the reductive processing of the heme-O2 catalytic intermediate. To investigate how these changes affect steady-state catalytic behaviors, we generated and characterized the V346I mutant of full-length inducible NOS (iNOS). The mutant exhibited a 4-5 fold lower NO synthesis activity, an apparent uncoupled NADPH consumption, and formation of a heme-NO complex during catalysis that was no longer sensitive to solution NO scavenging. We found that these altered catalytic behaviors were not due to changes in the heme reduction rate or in the stability of the enzyme heme-O2 intermediate, but instead were due to the slower NO kon and kd and a slower oxidation rate of the enzyme ferrous heme-NO complex. Computer simulations that utilized the measured kinetic values confirmed this interpretation, and revealed that the V346I iNOS has an enhanced NADPH-dependent NO dioxygenase activity that converts almost 1 NO to nitrate for every NO that the enzyme releases into solution. Together, our results highlight the importance of heme pocket geometry in tuning the NO release versus NO dioxygenase activities of iNOS.  相似文献   

12.
Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate l-Arg first to Nω-hydroxyl-l-arginine and then to l-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the dispute in the various proposed mechanisms resides in the uncertainty concerning the number and sources of proton transfers. Although specific protonation events are key features in determining the specificity and efficiency of the two catalytic steps, little is known about the role and properties of protons from the substrate, cofactors, and H-bond network in the vicinity of the heme active site. In this study, we have investigated the role of the acidic proton from the l-Arg guanidinium moiety on the stability and reactivity of the ferrous heme-oxy complex intermediate by exploiting a series of l-Arg analogues exhibiting a wide range of guanidinium pKa values. Using electrochemical and vibrational spectroscopic techniques, we have analyzed the effects of the analogues on the heme, including characteristics of its proximal ligand, heme conformation, redox potential, and electrostatic properties of its distal environment. Our results indicate that the substrate guanidinium pKa value significantly affects the H-bond network near the heme distal pocket. Our results lead us to propose a new structural model where the properties of the guanidinium moiety finely control the proton transfer events in NOS and tune its oxidative chemistry. This model may account for the discrepancies found in previously proposed mechanisms of NOS oxidation processes.  相似文献   

13.
Crystal structures are reported for the endothelial nitric oxide synthase (eNOS)–arginine–CO ternary complex as well as the neuronal nitric oxide synthase (nNOS) heme domain complexed with l-arginine and diatomic ligands, CO or NO, in the presence of the native cofactor, tetrahydrobiopterin, or its oxidized analogs, dihydrobiopterin and 4-aminobiopterin. The nature of the biopterin has no influence on the diatomic ligand binding. The binding geometries of diatomic ligands to nitric oxide synthase (NOS) follow the {MXY} n formalism developed from the inorganic diatomic–metal complexes. The structures reveal some subtle structural differences between eNOS and nNOS when CO is bound to the heme which correlate well with the differences in CO stretching frequencies observed by resonance Raman techniques. The detailed hydrogen-bonding geometries depicted in the active site of nNOS structures indicate that it is the ordered active-site water molecule rather than the substrate itself that would most likely serve as a direct proton donor to the diatomic ligands (CO, NO, as well as O2) bound to the heme. This has important implications for the oxygen activation mechanism critical to NOS catalysis.  相似文献   

14.
Cobalamins are important cofactors for methionine synthase and methylmalonyl-CoA mutase. Certain corrins also bind nitric oxide (NO), quenching its bioactivity. To determine if corrins would inhibit NO synthase (NOS), we measured their effects on -l-[14C]arginine-to-l-[14C]citrulline conversion by NOS1, NOS2, and NOS3. Hydroxocobalamin (OH-Cbl), cobinamide, and dicyanocobinamide (CN2-Cbi) potently inhibited all isoforms, whereas cyanocobalamin, methylcobalamin, and adenosylcobalamin had much less effect. OH-Cbl and CN2-Cbi prevented binding of the oxygen analog carbon monoxide (CO) to the reduced NOS1 and NOS2 heme active site. CN2-Cbi did not react directly with NO or CO. Spectral perturbation analysis showed that CN2-Cbi interacted directly with the purified NOS1 oxygenase domain. NOS inhibition by corrins was rapid and not reversed by dialysis with l-arginine or tetrahydrobiopterin. Molecular modeling indicated that corrins could access the unusually large heme- and substrate-binding pocket of NOS. Best fits were obtained in the “base-off” conformation of the lower axial dimethylbenzimidazole ligand. CN2-Cbi inhibited interferon-γ-activated Raw264.7 mouse macrophage NO production. We show for the first time that certain corrins directly inhibit NOS, suggesting that these agents (or their derivatives) may have pharmacological utility. Endogenous cobalamins and cobinamides might play important roles in regulating NOS activity under normal and pathological conditions.  相似文献   

15.
Structure-function studies on nitric oxide synthases   总被引:6,自引:0,他引:6  
Nitric oxide synthase (NOS) catalyzes the oxidation of one l-arginine guanidinium N atom to nitric oxide (NO). NOS consists of a heme domain linked to a flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD) reductase that shuttles electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to the heme. This review summarizes various aspects of NOS structure and function derived from crystal structures coupled with a wealth of biochemical and biophysical data. This includes the binding of diatomic ligands, especially the product, NO, whose binding to the heme iron blocks enzyme activity. An unusual feature of NOS catalysis is the strict requirement for the essential cofactor, tetrahydrobiopterin (H4B). It now is generally agreed that H4B serves as an electron donor to the heme-oxy complex. The reason NOS may have recruited H4B as an electron transfer cofactor is to provide rapid coupled proton/electron transfer required for O2 activation. NOS is a highly regulated enzyme which is controlled by calmodulin (CaM) at the level of electron transfer within the FMN/FAD reductase and between the reductase and heme domains. Recent crystal structures provide a basis for developing models on the structural underpinnings of NOS regulation. In addition to the complex and fascinating functional and regulatory features of NOS, NOS is an important therapeutic target. Crystal structures have revealed the structural basis of isoform-selective inhibition by a group of dipeptide inhibitors which opens the way for structure-based inhibitor design.  相似文献   

16.
Neuronal NO synthase (nNOS) was discovered recently to interact specifically with the protein PIN (protein inhibitor of nNOS) [Jaffrey, S.R. and Snyder, S.H. (1996) Science 274, 774–777]. We have studied the effects on pure NOS enzymes of the same GST-tagged PIN used in the original paper. Unexpectedly, all NOS isoenzymes were inhibited. The IC50 for nNOS was 18±6 μM GST-PIN with 63 nM nNOS after 30 min at 37°C. Uncoupled NADPH oxidation was inhibited similarly, whereas cytochrome c reductase activity, the KM for l-arginine, and dimerization were unaffected. We reconsider the physiological role of PIN in the light of these results.  相似文献   

17.
Thirteen different polypeptide subunits, each in one copy, five phosphatidyl ethanolamines and three phosphatidyl glycerols, two hemes A, three Cu ions, one Mg ion, and one Zn ion are detectable in the crystal structure of bovine heart cytochrome c oxidase in the fully oxidized form at 2.8 Å resolution. A propionate of hems a, a peptide unit (–CO–NH–), and an imidazole bound to CuA are hydrogen-bonded sequentially, giving a facile electron transfer path from CuA to heme a. The O2 binding and reduction site, heme a 3, is 4.7 Å apart from CuB. Two possible proton transfer paths from the matrix side to the cytosolic side are located in subunit I, including hydrogen bonds and internal cavities likely to contain randomly oriented water molecules. Neither path includes the O2 reduction site. The O2 reduction site has a proton transfer path from the matrix side possibly for protons for producing water. The coordination geometry of CuB and the location of Tyr244 in subunit I at the end of the scalar proton path suggests a hydroperoxo species as the two electron reduced intermediate in the O2 reduction process.  相似文献   

18.
Synthesis of compounds containing a fragment similar to the guanidine group of L-arginine, which is a substrate of nitric oxide synthase (NOS), is the main direction in creating NOS inhibitors. The inhibitory effect of such compounds is caused not only by their competition with the substrate for the L-arginine-binding site and/or oxidizing center of the enzyme (heme) but also by interaction with peptide motifs of the enzyme that influence its dimerization, affinity for cofactors, and interaction with associated proteins. Structures, activities, and relative in vitro and in vivo specificities of various NOS inhibitors (amino acid and non-amino acid) with linear or cyclic structure and containing guanidine, amidine, or isothiuronium group are considered. These properties are mainly analyzed by comparison with effects of the inhibitors on the inducible NOS.Translated from Biokhimiya, Vol. 70, No. 1, 2005, pp. 14–32.Original Russian Text Copyright © 2005 by Proskuryakov, Konoplyannikov, Skvortsov, Mandrugin, Fedoseev.  相似文献   

19.
In an effort to generate more stable reaction intermediates involved in substrate oxidation by nitric-oxide synthases (NOSs), we have cloned, expressed, and characterized a thermostable NOS homolog from the thermophilic bacterium Geobacillus stearothermophilus (gsNOS). As expected, gsNOS forms nitric oxide (NO) from l-arginine via the stable intermediate N-hydroxy l-arginine (NOHA). The addition of oxygen to ferrous gsNOS results in long-lived heme-oxy complexes in the presence (Soret peak 427 nm) and absence (Soret peak 413 nm) of substrates l-arginine and NOHA. The substrate-induced red shift correlates with hydrogen bonding between substrate and heme-bound oxygen resulting in conversion to a ferric heme-superoxy species. In single turnover experiments with NOHA, NO forms only in the presence of H(4)B. The crystal structure of gsNOS at 3.2 AA of resolution reveals great similarity to other known bacterial NOS structures, with the exception of differences in the distal heme pocket, close to the oxygen binding site. In particular, a Lys-356 (Bacillus subtilis NOS) to Arg-365 (gsNOS) substitution alters the conformation of a conserved Asp carboxylate, resulting in movement of an Ile residue toward the heme. Thus, a more constrained heme pocket may slow ligand dissociation and increase the lifetime of heme-bound oxygen to seconds at 4 degrees C. Similarly, the ferric-heme NO complex is also stabilized in gsNOS. The slow kinetics of gsNOS offer promise for studying downstream intermediates involved in substrate oxidation.  相似文献   

20.
Abstract

Three vitamin B6 analogues have been synthesized and tested as inhibitors of thymidylate synthase. The compounds are: 4′,5′-dichloro-, 4,5′-dibromo- and 4′, 5′-diiodo-pyridoxine. All three analogues inhibited the enzyme irreversibly. The kinetic data for the chloro- and bromo-analogues showed that a limiting rate of inhibition is approached as the inhibitor concentration is increased, which indicates that a reversible enzyme: inhibitor affinity complex is formed prior to the irreversible reaction. 4′,5′-Dibromo-pyridoxine exhibited a greater binding affinity (lower Ki) for thymidylate synthase than 4′,5′-dichloro-pyridoxine, and it also reacted faster to irreversibly inhibit the enzyme. The presence of the substrate dUMP (10μM) completely protected thymidylate synthase from inhibition. These data suggest that the halogenated vitamin B6 analogues are active site-directed inhitors of thymidylate synthase, which first bind reversibly to the catalytic site and then react irreversibly with the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号