首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have evaluated the performance of the prototype In Vitro MicroFlow Kit (Litron Laboratories), which offers a flow cytometric method for scoring micronuclei (MN). This method uses sequential staining to differentiate MN from chromatin fragments derived from apoptotic or necrotic cells. Data were generated using the genotoxins methylmethane sulphonate (MMS), dimethylbenzanthracene (DMBA) and vinblastine, and the non-genotoxins dexamethasone and staurosporine, which are known to induce apoptosis in vitro. The results obtained with these agents were compared with conventional microscopy. For short-duration exposures (3-4h) both manual and flow methodologies demonstrated good concordance, with concentration-related increases in the percentage of MN for MMS, DMBA and vinblastine. Statistically significant increases were observed at > or = 20 and 40 microg/mL, for manual and flow analysis, respectively, for MMS; at 0.5 and 0.75 microg/mL for DMBA; and at 0.035 and 0.04 microg/mL, respectively, for vinblastine. Dexamethasone showed clear negative responses by manual and flow cytometric analysis, with comparable results for both methodologies (all <1.7-fold compared with concurrent vehicle controls). Data for staurosporine, however, were less consistent showing significantly higher flow cytometric MN frequencies compared with those seen after manual analysis. Continuous (24 h) treatments were also conducted with MMS, vinblastine, dexamethasone and staurosporine. There was good concordance between the methodologies for MMS, staurosporine and vinblastine. However, dexamethasone generated discordant results, i.e. microscopic analysis was clearly negative at all doses tested, whereas flow cytometry produced significant increases in MN frequency (up to 8.1-fold at 100 microg/mL compared with the concurrent vehicle control). The inconsistencies observed between flow cytometry and standard microscopy, and the differences in assay sensitivity, particularly for apoptosis-inducing compounds, suggest that the prototype In Vitro MicroFlow Kit requires further refinement. Studies to investigate new parameters to address these issues are now under way and will be reported separately.  相似文献   

2.
The development of automated flow cytometric (FCM) methods for evaluating micronucleus (MN) frequencies in erythrocytes has great potential for improving the sensitivity, reproducibility, and throughput of the traditional in vivo rodent MN assay that uses microscopy-based methods for data collection. Although some validation studies of the FCM evaluation methods have been performed, a comprehensive comparison of these two data collection methods under routine testing conditions with a variety of compounds in multiple species has not been conducted. Therefore, to determine if FCM evaluation of MN frequencies in rodents was an acceptable alternative to traditional manual scoring methods in our laboratory, we conducted a comparative evaluation of MN-reticulocyte (MN-RET) frequencies determined by FCM- and microscopy-based scoring of peripheral blood and bone marrow samples from B6C3F1 mice and Fisher 344 rats. Four known inducers of MN (cyclophosphamide, ethyl methanesulfonate, vincristine sulfate, acrylamide) were assayed in bone marrow and peripheral blood of both mice and rats. In addition, MN-RET frequencies were measured in bone marrow (microscopy) and peripheral blood (FCM) of mice treated with five nongenotoxic chemicals (S-adenosylmethionine chloride, cefuroxime, diphenolic acid, 3-amino-6-methylphenol, pentabromodiphenyl oxide). No significant differences were observed between results obtained by the two methods in either species. These results support the use of FCM for determining MN-RET frequency in rodents after chemical exposure.  相似文献   

3.
Propineb, a dithiocarbamate fungicide, is commonly used for the control of disease in a wide range of crops in agriculture. The genotoxic effects of commercial formulation of propineb in bone marrow cells of mice was investigated in vivo by micronucleus (MN) assay. The three different concentrations of propineb (12.5, 25 and 50 μg/mL; 0.01 mL per gram) were injected intraperitoneally (i.p.) to mice for 24 and 48 h. The results of the MN assay indicated that propineb induced a significant increase in frequency of micronucleated polychromatic erythrocytes (MNPCE) at 25 and 50 μg/mL concentrations for 24 h and at the highest (50 μg/mL) concentration for 48 h when compared with negative control. Also significant reduction for the polychromatic erythrocyte/normochromatic erythrocyte (PCE/NCE) ratio which is indicative for bone marrow cytotoxicity was observed at the same concentrations for 24 and 48 h. These results lead us to the conclusion that propineb may have genotoxic and cytotoxic potential due to induction in the frequency of MN and a reduction in PCE/NCE ratio in the bone marrow cells of mice.  相似文献   

4.
We have evaluated the performance of the prototype In Vitro MicroFlow® Kit (Litron Laboratories), which offers a flow cytometric method for scoring micronuclei (MN). This method uses sequential staining to differentiate MN from chromatin fragments derived from apoptotic or necrotic cells. Data were generated using the genotoxins methylmethane sulphonate (MMS), dimethylbenzanthracene (DMBA) and vinblastine, and the non-genotoxins dexamethasone and staurosporine, which are known to induce apoptosis in vitro. The results obtained with these agents were compared with conventional microscopy.For short-duration exposures (3–4 h) both manual and flow methodologies demonstrated good concordance, with concentration-related increases in the percentage of MN for MMS, DMBA and vinblastine. Statistically significant increases were observed at ≥20 and 40 μg/mL, for manual and flow analysis, respectively, for MMS; at 0.5 and 0.75 μg/mL for DMBA; and at 0.035 and 0.04 μg/mL, respectively, for vinblastine. Dexamethasone showed clear negative responses by manual and flow cytometric analysis, with comparable results for both methodologies (all <1.7-fold compared with concurrent vehicle controls). Data for staurosporine, however, were less consistent showing significantly higher flow cytometric MN frequencies compared with those seen after manual analysis.Continuous (24 h) treatments were also conducted with MMS, vinblastine, dexamethasone and staurosporine. There was good concordance between the methodologies for MMS, staurosporine and vinblastine. However, dexamethasone generated discordant results, i.e. microscopic analysis was clearly negative at all doses tested, whereas flow cytometry produced significant increases in MN frequency (up to 8.1-fold at 100 μg/mL compared with the concurrent vehicle control).The inconsistencies observed between flow cytometry and standard microscopy, and the differences in assay sensitivity, particularly for apoptosis-inducing compounds, suggest that the prototype In Vitro MicroFlow® Kit requires further refinement. Studies to investigate new parameters to address these issues are now under way and will be reported separately.  相似文献   

5.
Micronuclei (MN) are routinely enumerated in mouse peripheral blood to index genotoxicity. Recent data from the Collaborative Study Group for the Micronucleus Test (CSGMT) [CSGMT (The Collaborative Study Group for the Micronucleus Test), Evaluation of the rat micronucleus test with bone marrow and peripheral blood: summary of the 9th collaborative study by CSGMT/JEMS MMS, Environ. Mol. Mutagen. 32 (1998) 84-100] suggest that rat peripheral blood may also be appropriate for the enumeration of MN, if scoring is limited to the youngest fraction of reticulocytes. The experiments described herein were designed to test whether modifications to a flow cytometric scoring procedure for measuring micronucleated reticulocytes (MN-RET) in mouse peripheral blood could be extended to accurately enumerate MN in rat peripheral blood. Rats were treated with saline or one of three genotoxic agents (6-mercaptopurine, ethyl methanesulfonate or propane sultone) in an acute dosing protocol. Peripheral blood samples were subsequently collected for both microscopic and flow cytometric analysis. Micronucleus frequencies were scored in the youngest fraction of reticulocytes: scoring by microscopy was restricted to the types I and II reticulocytes based on RNA content utilizing acridine orange supravital staining; flow cytometric measurements were restricted to the youngest fraction of reticulocytes based on transferrin receptor (CD71) staining. A statistically significant dose-related increase in the incidence of MN was observed, irrespective of scoring method. A higher level of statistical discrimination between control and genotoxin-treated groups was observed for the flow cytometric data and can most likely be explained by the increased number of cells scored (10x more than microscopy) and the lower scoring variability. Together, these data suggest that (i) rat peripheral blood represents an appropriate compartment for evaluating genotoxin-induced MN when the analysis is restricted to young reticulocytes, and (ii) the measurement of MN in rat peripheral blood reticulocytes benefits from the high throughput methodology of flow cytometry.  相似文献   

6.
The in vivo micronucleus assay working group of the International Workshop on Genotoxicity Testing (IWGT) discussed new aspects in the in vivo micronucleus (MN) test, including the regulatory acceptance of data derived from automated scoring, especially with regard to the use of flow cytometry, the suitability of rat peripheral blood reticulocytes to serve as the principal cell population for analysis, the establishment of in vivo MN assays in tissues other than bone marrow and blood (for example liver, skin, colon, germ cells), and the biological relevance of the single-dose-level test. Our group members agreed that flow cytometric systems to detect induction of micronucleated immature erythrocytes have advantages based on the presented data, e.g., they give good reproducibility compared to manual scoring, are rapid, and require only small quantities of peripheral blood. Flow cytometric analysis of peripheral blood reticulocytes has the potential to allow monitoring of chromosome damage in rodents and also other species as part of routine toxicology studies. It appears that it will be applicable to humans as well, although in this case the possible confounding effects of splenic activity will need to be considered closely. Also, the consensus of the group was that any system that meets the validation criteria recommended by the IWGT (2000) should be acceptable. A number of different flow cytometric-based micronucleus assays have been developed, but at the present time the validation data are most extensive for the flow cytometric method using anti-CD71 fluorescent staining especially in terms of inter-laboratory collaborative data. Whichever method is chosen, it is desirable that each laboratory should determine the minimum sample size required to ensure that scoring error is maintained below the level of animal-to-animal variation. In the second IWGT, the potential to use rat peripheral blood reticulocytes as target cells for the micronucleus assay was discussed, but a consensus regarding acceptability for regulatory purposes could not be reached at that time. Subsequent validation efforts, combined with accumulated published data, demonstrate that blood-derived reticulocytes from rats as well as mice are acceptable when young reticulocytes are analyzed under proper assay protocol and sample size. The working group reviewed the results of micronucleus assays using target cells/tissues other than hematopoietic cells. We also discussed the relevance of the liver micronucleus assay using young rats, and the importance of understanding the maturation of enzyme systems involved in the processes of metabolic activation in the liver of young rats. Although the consensus of the group was that the more information with regard to the metabolic capabilities of young rats would be useful, the published literature shows that young rats have sufficient metabolic capacity for the purposes of this assay. The use of young rats as a model for detecting MN induction in the liver offers a good alternative methodology to the use of partial hepatectomy or mitogenic stimulation. Additional data obtained from colon and skin MN models have been integrated into the data bases, enhancing confidence in the utility of these models. A fourth topic discussed by the working group was the regulatory acceptance of the single-dose-level assay. There was no consensus regarding the acceptability of a single dose level protocol when dose-limiting toxicity occurs. The use of a single dose level can lead to problems in data interpretation or to the loss of animals due to unexpected toxicity, making it necessary to repeat the study with additional doses. A limit test at a single dose level is currently accepted when toxicity is not dose-limiting.  相似文献   

7.
《Mutation Research Letters》1994,323(1-2):11-20
Bone marrow and spleen toxicity, clastogenicity and aneugenicity were analyzed in the CD1 mouse using an antikinetochore antibody (AKA) procedure (Krishna et al., Mutation Res., 282, 159–169, 1992). Further, to verify the fluorescence micronucleus (MN) analysis, additional slides were stained with Wright's Giemsa and results were compared. 5 mice per sex were treated with cyclophosphamide (CP) (40 mg/kg) or vincristine (VC) (0.1 or 0.2 mg/kg). Slides were prepared 24 h postdose using a column fractionation procedure. Per animal, 400 total erythrocytes (TEs) for toxicity and 2000 polychromatic erythrocytes (PCEs) for MN per tissue were analyzed. In the fluorescent method, the clastogen, CP, produced MNPCEs predominantly devoid of kinetochores (K) and the aneugen, VC, produced mostly MNPCEs containing K. The MNP CE frequency did not differ significantly between tissues; however, it differed statistically between sexes. On an overall basis, spleen had significantly lower PCE to TE ratios compared to bone marrow. In general, CP and VC caused a small, but statistically significant decrease in PCE frequencies compared to controls, suggesting possible toxicity to these tissues at the given doses. The data on Wright's stain indicated that the proportion of PCEs and MNPCEs in general, were comparable to those using fluorescent stain. This study further confirms the usefulness of an AKA-staining technique in a multiple genetic endpoint evaluation under a single set of microscope conditions.  相似文献   

8.
The mouse bone marrow micronucleus assay is anin vivo test commonly used in the pharmaceutical industry to evaluate the genotoxic potential of new compounds. The test detects agent-induced chromosomal damage or damage of the mitotic spindle apparatus. In this paper the state-of-the-art in automated rodent micronucleus evaluation using computerized image analyis in combination with high-quality slides obtained by the cellulose column fractionation technique is reviewed. The latter allows the effective removal of nucleated cells from rodent bone marrow. It has been found that automatic micronucleus scoring with the Leitz MIAC image analyzer is substantially faster than labor-intensive manual analysis. Automatic scoring can be performed overnight for up to 16 slides. We have been successfully using automatic micronucleus analysis for the testing of new pharmaceutical drugs for more than 3 years.Abbreviations MNE NCE containing micronuclei - MPE PCE containing micronuclei - NCE normochromatic erythrocyte - PCE polychromatic erythrocyte deceased on 25 May 1994  相似文献   

9.
An international, multi-lab trial was conducted to evaluate a flow cytometry-based method for scoring micronuclei in mouse lymphoma L5178Y cells [S.L. Avlasevich, S.M. Bryce, S.E. Cairns, S.D. Dertinger, In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability, Environ. Mol. Mutagen. 47 (2006) 56-66]. A reference laboratory investigated the potential of six chemicals to induce micronuclei -- the genotoxicants mitomycin C (MMC), etoposide (ETOPO), and vinblastine (VB), and the non-genotoxicants sucrose (SUC), staurosporine (STS), and dexamethasone (DEX). The latter two non-genotoxicants were selected as extreme challenges to the assay because of their potent apoptogenic activity. Three collaborating laboratories were supplied with prototype In Vitro MicroFlow kits, and each was assigned one genotoxicant and one non-genotoxicant. Cells were treated continuously for 24h over a range of concentrations up to 5 mg/ml, or overtly cytotoxic concentrations. Micronuclei were scored via standard microscopy and flow cytometry. In addition to enumerating micronucleus frequencies, a cytotoxicity measurement that is simultaneously acquired with the flow cytometric micronucleus scoring procedure was evaluated (Flow-NBR). With this method, latex particles served as counting beads, and facilitated relative survival measurements that exclude the presence of dead/dying cells. For comparison purposes, additional cytotoxicity endpoints were measured, including several that are based on cell number, and others that reflect compromised membrane integrity, including dye permeability and/or phospholipid distribution. Key findings for this set of compounds include the following: (1) significant discrepancies in top concentration selection were found when cytotoxicity measurements were based on different methods, with the Flow-NBR approach tending to be the most sensitive, (2) both microscopy- and flow cytometry-based scoring methods detected concentration-dependent micronucleus formation for the three genotoxic agents studied, with good agreement between the reference laboratory and the collaborating laboratories, and (3) whereas flow cytometric analyses showed no significant increases for the non-genotoxicants when top concentration selection was based on Flow-NBR, significantly elevated micronucleus frequencies were observed for concentrations that were chosen based on less-sensitive cytotoxicity assays. Collectively, these results indicate that rapid assessment of genotoxicity can be accomplished with a relatively simple flow cytometric technique, and that the scoring system is transferable across laboratories. Furthermore, a concurrent assessment of cytotoxicity, Flow-NBR, may help reduce the occurrence of irrelevant positive results, as it may represent a more appropriate means for choosing top concentration levels. Finally, the data presented herein reinforce concerns about the manner in which cytotoxicity limits are described in guidance documents, since these recommendations tend to cite fixed cut-off values without reference to methodology.  相似文献   

10.
An international, multi-lab trial was conducted to evaluate a flow cytometry-based method for scoring micronuclei in mouse lymphoma L5178Y cells [S.L. Avlasevich, S.M. Bryce, S.E. Cairns, S.D. Dertinger, In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability, Environ. Mol. Mutagen. 47 (2006) 56–66]. A reference laboratory investigated the potential of six chemicals to induce micronuclei—the genotoxicants mitomycin C (MMC), etoposide (ETOPO), and vinblastine (VB), and the non-genotoxicants sucrose (SUC), staurosporine (STS), and dexamethasone (DEX). The latter two non-genotoxicants were selected as extreme challenges to the assay because of their potent apoptogenic activity. Three collaborating laboratories were supplied with prototype In Vitro MicroFlow™ kits, and each was assigned one genotoxicant and one non-genotoxicant. Cells were treated continuously for 24 h over a range of concentrations up to 5 mg/ml, or overtly cytotoxic concentrations. Micronuclei were scored via standard microscopy and flow cytometry. In addition to enumerating micronucleus frequencies, a cytotoxicity measurement that is simultaneously acquired with the flow cytometric micronucleus scoring procedure was evaluated (Flow-NBR). With this method, latex particles served as counting beads, and facilitated relative survival measurements that exclude the presence of dead/dying cells. For comparison purposes, additional cytotoxicity endpoints were measured, including several that are based on cell number, and others that reflect compromised membrane integrity, including dye permeability and/or phospholipid distribution. Key findings for this set of compounds include the following: (1) significant discrepancies in top concentration selection were found when cytotoxicity measurements were based on different methods, with the Flow-NBR approach tending to be the most sensitive, (2) both microscopy- and flow cytometry-based scoring methods detected concentration-dependent micronucleus formation for the three genotoxic agents studied, with good agreement between the reference laboratory and the collaborating laboratories, and (3) whereas flow cytometric analyses showed no significant increases for the non-genotoxicants when top concentration selection was based on Flow-NBR, significantly elevated micronucleus frequencies were observed for concentrations that were chosen based on less-sensitive cytotoxicity assays. Collectively, these results indicate that rapid assessment of genotoxicity can be accomplished with a relatively simple flow cytometric technique, and that the scoring system is transferable across laboratories. Furthermore, a concurrent assessment of cytotoxicity, Flow-NBR, may help reduce the occurrence of irrelevant positive results, as it may represent a more appropriate means for choosing top concentration levels. Finally, the data presented herein reinforce concerns about the manner in which cytotoxicity limits are described in guidance documents, since these recommendations tend to cite fixed cut-off values without reference to methodology.  相似文献   

11.
This study reports the influence of acute starvation on spontaneous and cyclophosphamide (CP) induced micronucleus (MN) frequencies in the bone marrow polychromatic erythrocytes (PCE) of CD-1 mice. Groups of mice (5/sex) were deprived of either food alone or food and water for 0, 24, 48 and 72 h prior to sacrifice. Although there was no evidence of a significant increase in MN-PCE frequencies among the starved groups, a significant depressant effect of starvation on erythropoietic activity was observed. Peak levels of CP-induced (40 mg/kg b.w.) MN-PCE's appeared later in male mice deprived of food and water after treatment compared to mice given food and water ad libitum. The results indicate that starvation is detrimental to bone marrow erythropoiesis and that starvation may alter the response of mice to clastogens.  相似文献   

12.
This laboratory has previously reported a flow cytometric procedure for quantitatively analyzing mouse peripheral blood reticulocytes for micronucleus content. The current study extends this line of investigation by evaluating whether these same flow cytometric scoring procedures can be applied to the analysis of mouse bone marrow samples. To validate the method, three groups of male BALB/c mice were treated with 100 mg/kg b.wt. methyl methanesulfonate. Bone marrow samples were collected 20, 40 or 60 h after administration. A set of 5 untreated animals was included to provide an indication of spontaneous micronucleus frequencies. The cells were fixed with ultracold methanol, treated with ribonuclease, and labeled with anti-CD71 antibody (FITC conjugate) and propidium iodide. This fixing and labeling procedure resulted in the resolution of the micronucleated reticulocyte population and facilitated high-speed acquisition and enumeration via flow cytometry. The number of micronucleated reticulocytes was determined flow cytometrically by the analysis of 10?000 total reticulocytes per bone marrow sample. In addition to these automated measurements, slides stained with acridine orange were prepared and the number of micronuclei per 1000 reticulocytes was determined microscopically for each sample. The resulting data demonstrate that flow cytometry can effectively enumerate micronucleated reticulocytes in mouse bone marrow. The advantages associated with an objective, high throughput scoring methodology are also clearly indicated.  相似文献   

13.
Effects of two derivatives of 1,4-dihydroisonicotinic acid (1,4-DHINA) against the monofunctional alkylating agent ethyl methanesulfonate (EMS) were studied in the micronucleus test in (CBA x C57Bl/6(j)) mice. Adult males and pregnant females were treated with an antimutagen (i.p.) and 12h later they were exposed to EMS (i.p.). The frequencies of micronucleated (MN) polychromatic erythrocytes (PCEs) in mouse bone marrow and foetal liver were analysed 6, 12, 18, 24, 30, 36, 48 or 24, 48 and 72 h after the mutagen injection. In adults, the maximum number of MNPCEs was observed 36 or 24h after the EMS administration. In foetuses, which were treated in a maternal organism, such peak was found at 24h. Pre-treatment of mice with the antimutagens 2,6-dimethyl-3,5-diethoxycarbonyl-4-(Na carboxylate)-1,4-dihydropyridine (DHP) and glutapyrone (GP) decreased the yield of MNPCEs in male bone marrow. Having been observed at a peak of MN induction, the anticlastogenic effect of DHP (1/10 LD(50) or 340 mg/kg) reached 30%. DHP at the doses of 0.5-1mM/kg did not affect the EMS-induced frequency of MNPCEs in bone marrow, whereas GP inhibited it at the similar millimolar concentrations. Simultaneously with maternal bone marrow, foetal liver cells were analysed for MNs in the transplacental test. The anticlastogenic effect of DHP (1/10 LD(50)) was found to be more prolonged and higher in females than in males and to average 50%, but this antimutagen was not efficient in foetuses. Both antimutagens did not change the polychromatic/normochromatic erythrocyte (PCE/NCE) ratio as compared with EMS action.Results presented indicate a peak of EMS-induced micronucleated cells in mouse bone marrow 24 or 36 h and in foetal liver 24h after animal treatment. Two 1,4-DHINA derivatives exhibited anticlastogenic activity in adults, but not in foetuses.  相似文献   

14.
The extreme rarity of micronucleated reticulocytes (RETs) in the peripheral blood of non-splenectomized humans has precluded facile enumeration of these cells, as well as evaluation of this endpoint as an index of cytogenetic damage. In this report, we describe a high-throughput, single-laser flow cytometric system for scoring the incidence of micronuclei (MN) in newly formed human RETs. The procedure is based on an immunochemical reagent that differentially labels the most immature fraction of RETs from mature erythrocytes based on the expression level of the transferrin receptor (also known as CD71). The resolution of four erythrocyte populations (young RETs and mature erythrocytes, with and without MN) was achieved for human blood cells treated with phycoerythrin-conjugated anti-CD71, RNase, and either SYTOX Green or SYBR Green I nucleic acid dyes. Anti-glycophorin A labeling of erythroid cells (CyChrome conjugate) was also incorporated into the staining procedure to ensure that debris or other potential artifacts did not adversely impact the analyses. Instrument calibration procedures utilizing malaria-infected rodent erythrocytes were also developed, and are described. Using this analytical system, blood samples from 10 healthy non-splenectomized human volunteers were analyzed for micronucleus frequencies with a single-laser flow cytometer. Average micronucleus frequencies in the mature and most immature fraction of RETs were 0.016 and 0.19%, respectively. Blood samples from three healthy splenectomized volunteers were also evaluated. As expected, these samples exhibited higher micronucleus frequencies in the mature subset of erythrocytes (range 0.03-0.18%). The resulting data suggest that MN can be quantified in human erythrocyte populations with a single-laser flow cytometer, and that the frequency of MN cells in the youngest reticulocyte population approaches values expected in the absence of splenic selection against MN-erythrocytes. This high throughput system is potentially important for evaluating the value of the micronucleated reticulocyte endpoint as an index of chromosome breakage and/or chromosome segregational abnormalities in human populations.  相似文献   

15.
1-Methyl-2-pyrrolidinone induces aneuploidy in yeast, but only under special treatment conditions. Other genotoxic effects have not been found in vitro, and in vivo no data are available in the literature. Therefore, NMP was investigated in the mouse micronucleus test and the Chinese hamster bone marrow test for structural and numerical chromosomal aberrations. These tests can detect both types of alterations as demonstrated by appropriate positive control substances (cyclophosphamide, vincristine sulfate and benomyl). NMP at single oral doses up to 3800 mg/kg body weight (∼ 80% of the LD50) did not lead to an increase either in micronucleated erythrocytes or in structural or numerical chromosomal aberrations when bone marrow was sampled 16, 24 and 48 h after treatment in the micronucleus test or after 24 and 48 h for karyotype analysis.  相似文献   

16.
We developed a flow cytometric method for the enumeration and classification of nonmalignant immature granulocytes (IG). In this study, IG are defined as most immature (IG stage 1: promyelocytes and myelocytes) and as more mature (IG stage 2: metamyelocytes). Blood specimens from 46 patients with documented infectious or inflammatory disease and known presence of IG (by routine manual microscopy) were analyzed. For a reference manual differential count, we used a 400 white blood cell (WBC) differential and separated granulocytes into promyelocytes and myelocytes combined, metamyelocytes, and included band cells in the mature, segmented neutrophil population. The flow cytometric method is based on three-color staining of whole, anticoagulated blood with CD45-PerCP, CD16-FITC, and CD11b-PE-labeled monoclonal antibodies and a three-step gating procedure. The flow cytometric results were confirmed by cell sorting and microscopic evaluation of the sorted cells. A total of 10,000 events, excluding debris, were recorded per specimen and IG stage 1 (CD16-/CD11b-), IG stage 2 (CD16-/CD11b+), and mature neutrophils (CD16+/CD11b+) were categorized. Regression and correlation between flow cytometric IG and the manual differential showed y = 1.34x + 0.95, r(2) = 0.86 for IG stages 1 and 2 combined versus promyelocytes, myelocytes, and metamyelocytes. For IG stage 1 versus microscopic counts of promyelocytes and myelocytes, the results were y = 1.53x + 1.24, r(2) = 0.76; for IG stage 2 versus manual metamyelocyte count, y = 0.77x + 0.21, r(2) = 0.58. Reproducibility of the flow cytometric method showed a coefficient of variation (CV) of 6.8% for all IG combined compared with a CV of 50.2% for manual differential IG count (based on a routine 100 WBC count). Samples were found stable at least 12 h at 25 degrees C and at least 48 h at 4 degrees C for flow cytometry. After staining and lysing, the sample was stable for at least 120 min at room temperature. We analyzed samples from patients with myelodysplastic and myeloproliferative disease separately. We found that CD16- mature neutrophils falsely elevated the flow cytometric IG count. Similar results were obtained in blood from patients treated with granulocyte-colony stimulating factor (G-CSF). Although this restricts the use of the method somewhat, we believe that this flow cytometric method is useful for enumerating reactive IG, as well as for evaluating automated methods for IG identification by hematology analyzers.  相似文献   

17.
This study was undertaken to investigate the genotoxic interactions between the common environmental pollutants: arsenic (As), cadmium (Cd) and benzo(a)pyrene (BaP), which are known to be human carcinogens. C57BL/6J/Han mice were pre-treated with 100mg cadmium chloride (Cd(2+))/L or 50mg sodium arsenite (As(3+))/L in drinking water for 7 days and then given a single dose of 200mg BaP/kg bw by intra-peritoneal injection. A third group of mice did not receive the pre-treatment and was given BaP alone. Mice were sacrificed before or at 12, 24, 48 or 72h after BaP administration. Chromosome damage in bone-marrow cells was assessed by use of the micronucleus test. The study revealed that BaP induced a statistically significant increase in micronucleus (MN) frequency at 48h after administration. In animals exposed to Cd in drinking water no enhancement of genotoxicity was observed compared with the control group that was given tap water only. In Cd/BaP co-exposed animals, the MN frequency at respective time points did not differ from that for the animals exposed solely to BaP. A statistically higher MN frequency was found in bone marrow of animals exposed to As compared with controls that received tap water (0.92+/-0.29% versus 0.38+/-0.13%, respectively). This effect was even more pronounced after combined exposure to As and BaP. In the co-exposed animals, significantly elevated levels of MN were detected in samples examined at 12, 24 and 48h after BaP administration, compared with animals receiving BaP alone (1.14+/-0.31%, 1.26+/-0.3% and 2.02+/-0.45% versus 0.44+/-0.13%, 0.44+/-0.11% and 1.04+/-0.44%, respectively). These findings imply strong interactions between As and BaP, but not between Cd and BaP, in inducing DNA damage in polychromatic erythrocytes in mouse bone-marrow.  相似文献   

18.
The aim of this study was to investigate the genotoxic effects of potassium bromate, which is used as a bleaching agent in flour, on human peripheral blood lymphocytes in vitro by sister chromatid exchange (SCE), chromosomal aberrations (CA) and micronucleus (MN) tests, and also to determine whether it has any genotoxic potential for humans. Cells were treated with 400, 450, 500, 550 microg/ml concentrations of potassium bromate for 24 and 48 h. The SCE frequencies showed an increase after both treatment periods, however, the differences between the treated cells and the control groups were found to be statistically significant only for the 48-h treatment. In addition, potassium bromate statistically significantly induced CA after the 24-h and 48-h treatment periods. Strikingly, potassium bromate induced CA as much as the positive control, mitomycin-C (MMC). Furthermore, potassium bromate decreased both the cell proliferation index (PI) and the mitotic index (MI). Although micronucleus formation was induced by potassium bromate during the 24-h treatment period in a dose-dependent manner, only the doses 500 and 550 microg/ml yielded statistically significant results. In contrast, MN formation was significantly induced at all doses during the 48-h treatment period. These in vitro results provide important evidence about genotoxicity of potassium bromate on a human cell culture system.  相似文献   

19.
《Mutation Research Letters》1993,301(4):223-227
Several known clastogens and mutagens have been tested for their ability to induce micronucleis (MN) using the cytokinesis-block method in mouse splenocytes. The chemicals were harringtonine, cisplatin, cytosine arabinoside, vincristine sulfate, colchicine, potassium chromate, methyl methanesulfonate and 2-acetylaminofluorence. All chemicals tested induced a dose-dependent increase in MN and a delay in cell-cycle progression. The results suggest that the cytokinesis-block micronucleus method in mouse splenocytes in reliable, economical and sensitive enough for detecting mutagenic agents in vivo and in vitro.  相似文献   

20.
In the present study the induction of micronuclei (MN) and nuclear abnormalities (NA) in erythrocytes of mosquitofish (Gambusia affinis) (Baird & Girard 1853) was studied. Fish were exposed to three different concentrations of lambda-cyhalothrin (LCT) (1×10(-4)μg/l, 2×10(-4)μg/l, 4×10(-4)μg/l) for periods of 6, 12, 24, and 48h. NA (notched, lobed, blebbed nuclei), MN, bi-nucleated cells, and the ratio of polychromatic erythrocytes (PCEs) to normochromatic erythrocytes (NCEs) were evaluated to assess genotoxicity and cytotoxicity. LCT significantly induced MN and NA in erythrocytes of G. affinis. The PCE/NCE ratio was also decreased after 24- and 48-h treatments of 4×10(-4)μg/l LCT. The results show that LCT has genotoxic and cytotoxic potential on G. affinis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号