共查询到20条相似文献,搜索用时 15 毫秒
1.
Unni Syversen Astrid K Stunes Björn I Gustafsson Karl J Obrant Lars Nordsletten Rolf Berge Liv Thommesen Janne E Reseland 《BMC endocrine disorders》2009,9(1):1-13
Background
All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats.Methods
Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied.Results
The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1.Conclusion
We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation. 相似文献2.
Rikimaru K Wakabayashi T Abe H Imoto H Maekawa T Ujikawa O Murase K Matsuo T Matsumoto M Nomura C Tsuge H Arimura N Kawakami K Sakamoto J Funami M Mol CD Snell GP Bragstad KA Sang BC Dougan DR Tanaka T Katayama N Horiguchi Y Momose Y 《Bioorganic & medicinal chemistry》2012,20(2):714-733
Herein, we describe the design, synthesis, and structure-activity relationships of novel benzylpyrazole acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based peroxisome proliferator-activated receptor (PPAR) γ agonists. Docking model analysis of in-house weak agonist 2 bound to the reported PPARγ ligand binding domain suggested that modification of the carboxylic acid of 2 would help strengthen the interaction of 2 with the TZD pocket and afford non-carboxylic-acid-based agonists. In this study, we used an acylsulfonamide group as the ring-opening analog of TZD as an isosteric replacement of carboxylic acid moiety of 2; further, preliminary modification of the terminal alkyl chain on the sulfonyl group gave the lead compound 3c. Subsequent optimization of the resulting compound gave the potent agonists 25c, 30b, and 30c with high metabolic stability and significant antidiabetic activity. Further, we have described the difference in binding mode of the carboxylic-acid-based agonist 1 and acylsulfonamide 3d. 相似文献
3.
《Bioorganic & medicinal chemistry letters》2019,29(22):126664
Peroxisome Proliferator-Activated Receptor γ (PPARγ) is a nuclear receptor important for glucose homeostasis and insulin sensitivity. The anti-diabetic drugs thiazolidinediones improve insulin sensitivity by blocking PPARγ phosphorylation at S273; however, their full agonism on PPARγ also causes significant unwanted side effects. The indole derivative UHC1 displays insulin-sensitizing effect by acting as a partial agonist through the inhibition of PPARγ S273 phosphorylation, but without full agonist-associated side effects; however, its potency leaves much to be desired. Herein we report the design and synthesis of potent indole analogs as partial PPARγ agonists via the structure-activity relationship studies. Our studies revealed that vanillylamine and piperonyl benzylamine at Site 1 are favored to bind PPARγ with either biphenyl or 3-trifluoromethyl benzyl group at Site 2. In particular, compound WO91A with vanillylamine at Site 1 displays highly potent PPARγ binding affinity (IC50 = 16.7 nM), over 30-fold more potent than the parental compound UHC1, yet with less side effect-associated transactivation activity. 相似文献
4.
Otake K Azukizawa S Fukui M Kunishiro K Kamemoto H Kanda M Miike T Kasai M Shirahase H 《Bioorganic & medicinal chemistry》2012,20(2):1060-1075
A novel series of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and (S)-2-[(2E,4E)-hexadienoyl]-7-(2-{5-methyl-2-[(1E)-5-methylhexen-1-yl]oxazol-4-yl}ethoxy)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (14i) was identified as a potent human peroxisome proliferator-activated receptor γ (PPARγ) selective agonist (EC(50)=0.03 μM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC(50)=1.18 μM). C(max) after oral administration of 14i at 10mg/kg was 2.2 μg/ml (4.5 μM) in male SD rats. Repeated administration of 14i and rosiglitazone for 14 days dose-dependently decreased plasma glucose levels, ED(50)=4.3 and 23 mg/kg/day, respectively, in male KK-A(y) mice. In female SD rats, repeated administration of 14i at 12.5-100mg/kg/day for 28 days had no effect on the hematocrit value (Ht) and red blood cell count (RBC), while rosiglitazone significantly decreased them from 25mg/kg/day. In conclusion, 14i showed about a fivefold stronger hypoglycemic effect and fourfold or more weaker hemodilution effect than rosiglitazone, indicating that 14i is 20-fold or more safer than rosiglitazone. Compound 14i is a promising candidate for an efficacious and safe anti-diabetic drug targeting PPARγ and PTP-1B. 相似文献
5.
6.
7.
Rikimaru K Wakabayashi T Abe H Tawaraishi T Imoto H Yonemori J Hirose H Murase K Matsuo T Matsumoto M Nomura C Tsuge H Arimura N Kawakami K Sakamoto J Funami M Mol CD Snell GP Bragstad KA Sang BC Dougan DR Tanaka T Katayama N Horiguchi Y Momose Y 《Bioorganic & medicinal chemistry》2012,20(10):3332-3358
In our search for a novel class of non-TZD, non-carboxylic acid peroxisome proliferator-activated receptor (PPAR) γ agonists, we explored alternative lipophilic templates to replace benzylpyrazole core of the previously reported agonist 1. Introduction of a pentylsulfonamide group into arylpropionic acids derived from previous in-house PPARγ ligands succeeded in the identification of 2-pyridyloxybenzene-acylsulfonamide 2 as a lead compound. Docking studies of compound 2 suggested that a substituent para to the central benzene ring should be incorporated to effectively fill the Y-shaped cavity of the PPARγ ligand-binding domain (LBD). This strategy led to significant improvement of PPARγ activity. Further optimization to balance in vitro activity and metabolic stability allowed the discovery of the potent, selective and orally efficacious PPARγ agonist 8f. Structure-activity relationship study as well as detailed analysis of the binding mode of 8f to the PPARγ-LBD revealed the essential structural features of this series of ligands. 相似文献
8.
In a search for possible endogenous ligands of nuclear receptors that are activated by peroxisome proliferators (PPARs), a solid phase binding assay was developed employing recombinant mouse PPAR-alpha, containing a myc-epitope, a histidine repeat and a kinase A domain. After in vitro labelling with 32P-gamma-ATP, the binding of purified 32P-PPAR-alpha to a panel of different natural and synthetic lipids, immobilized on silica layers, was evaluated. Autoradiographs of the silica layers revealed binding to two main classes of lipophilic compounds. A first class comprised (poly)unsaturated fatty acids. Compounds belonging to a second class were characterized by the presence of an overall positive charge such as long chain amines, sphingoid bases (sphingenine), and lysoglycosphingolipids (psychosine). PPAR-alpha did not bind to N-acylated sphingoid bases (ceramides) or to sphingenine phosphorylated at the primary hydroxy group (sphingenine-1-phosphate). The binding of PPAR-alpha to sphingoid bases might be of interest given the role of PPAR-alpha and sphingolipids in various cellular processes. 相似文献
9.
Masao Ohashi Takuji Oyama Endy Widya Putranto Tsuyoshi Waku Hiromi Nobusada Ken Kataoka Kenji Matsuno Masakazu Yashiro Kosuke Morikawa Nam-ho Huh Hiroyuki Miyachi 《Bioorganic & medicinal chemistry》2013,21(8):2319-2332
In the continuing study directed toward the development of peroxisome proliferator-activated receptor gamma (hPPARγ) agonist, we attempted to improve the water solubility of our previously developed hPPARγ-selective agonist 3, which is insufficiently soluble for practical use, by employing two strategies: introducing substituents to reduce its molecular planarity and decreasing its hydrophobicity via replacement of the adamantyl group with a heteroaromatic ring. The first approach proved ineffective, but the second was productive. Here, we report the design and synthesis of a series of α-benzyl phenylpropanoic acid-type hPPARγ partial agonists with improved aqueous solubility. Among them, we selected (R)-7j, which activates hPPARγ to the extent of about 65% of the maximum observed with a full agonist, for further evaluation. The ligand-binding mode and the reason for the partial-agonistic activity are discussed based on X-ray-determined structure of the complex of hPPARγ ligand-binding domain (LBD) and (R)-7j with previously reported ligand-LDB structures. Preliminal apoptotic effect of (R)-7j against human scirrhous gastric cancer cell line OCUM-2MD3 is also described. 相似文献
10.
3D QSAR studies on peroxisome proliferator-activated receptor γ agonists using CoMFA and CoMSIA 总被引:1,自引:0,他引:1
The peroxisome proliferator-activated receptors (PPARs) have increasingly become attractive targets for developing novel anti-type 2 diabetic drugs. We employed comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to study three-dimensional quantitative structure–activity relationship (3D QSAR) based on existing agonists of PPAR (including five thiazolidinediones and 74 tyrosine-based compounds). Predictive 3D QSAR models with conventional r2 and cross-validated coefficient (q2) values up to 0.974 and 0.642 for CoMFA and 0.979 and 0.686 for COMSIA were established using the SYBYL package. These models were validated by a test set containing 18 compounds. The CoMFA and CoMSIA field distributions are in general agreement with the structural characteristics of the binding pockets of PPAR, which demonstrates that the 3D QSAR models built here are very useful in predicting activities of novel compounds for activating PPAR. 相似文献
11.
12.
Whitehead JP 《The international journal of biochemistry & cell biology》2011,43(8):1071-1074
The PPARγ nuclear receptor orchestrates fatty acid storage and glucose metabolism by coordinating the expression of genes involved in lipid uptake, adipogenesis and inflammation. It is a target for the insulin-sensitising thiazolidinediones (TZDs) which have been used to treat diabetes since the late nineties. Adverse secondary effects of TZDs have underpinned continued investigations into the molecular details governing PPARγ regulation and new therapeutic approaches which represent the focus of this article. Recent findings position Cdk5 as a lead conductor of PPARγ. Cdk5 regulates PPARγ directly, via phosphorylation, and may also inhibit it indirectly, via phosphorylation and activation of phospholipase D2 (PLD2) which generates the endogenous inhibitor cyclic phosphatidic acid (CPA). Whilst the multifunctional nature of Cdk5 precludes it from therapeutic targeting all is not lost as selective PPARγ modulators (SPPARMs) have shown promising preclinical and clinical results heralding a new generation of drugs to conduct a more refined PPARγ program. 相似文献
13.
Posokhova EN Khoshchenko OM Chasovskikh MI Pivovarova EN Dushkin MI 《Biochemistry. Biokhimii?a》2008,73(3):296-304
The effects of peroxisome proliferator activated receptors α and γ (PPAR-α and PPAR-γ) and retinoid X receptor (RXR) agonists
upon synthesis and accumulation of lipids in murine C57B1 macrophages during inflammation induced by injection of zymosan
and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS
(0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate
18–24 h after injection and was decreased 5–7 days later to control level after LPS injection or was still heightened after
zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2–3-fold decreased. Addition of NLDL (50 μg/ml) or AcLDL (25 μg/ml) into the incubation
medium of activated macrophages induced 9–14-and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared
with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control
macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-α, or PPAR-γ
agonists—9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively—30 min before zymosan or LPS injection
led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 μM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition
into the cell cultivation medium. The data suggest that RXR, PPAR-α, or PPAR-γ agonists inhibited lipid synthesis and induction
of cholesteryl ester synthesis in inflammatory macrophages caused by capture of native or modified LDL.
Published in Russian in Biokhimiya, 2008, Vol. 73, No. 3, pp. 364–374. 相似文献
14.
Jun-ichi Kasuga Minoru Ishikawa Mitsuhiro Yonehara Makoto Makishima Yuichi Hashimoto Hiroyuki Miyachi 《Bioorganic & medicinal chemistry》2010,18(20):7164-7173
To elucidate the molecular basis of peroxisome proliferator-activated receptor (PPAR) δ partial agonism, X-ray crystal structures of complexes of the PPARδ ligand-binding site with partial agonists are required. Unfortunately, reported PPARδ partial agonists, biphenylcarboxylic acids 1 and 2, possess insufficient aqueous solubility to allow such crystals to be obtained. To improve the aqueous solubility of 1 and 2, substituents were introduced at the 2-position of the biaryl moiety, focusing on disruption of molecular planarity and symmetry. All 2-substituted biphenyl analogs examined showed more potent PPARδ agonistic activity with greater aqueous solubility than 1 or 2. Among these biphenyls, 25 showed potent and selective PPARδ partial agonistic activity (EC50: 5.7 nM), with adequate solubility in phosphate buffer (0.022 mg/mL). The 2-substituted pyridyl analog 27 showed weaker PPARδ partial agonistic activity (EC50: 76 nM) with excellent solubility in phosphate buffer (2.7 mg/mL; at least 2700 times more soluble than 2). Our results indicate that two strategies to improve aqueous solubility, that is, introduction of substituent(s) to modify the dihedral angle and to disrupt molecular symmetry, may be generally applicable to bicyclic molecules. Combination of these approaches with the traditional approach of reducing the molecular hydrophobicity may be particularly effective. 相似文献
15.
The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARα 总被引:1,自引:0,他引:1
Hirosuke Danno Yoshimi Nakagawa 《Biochemical and biophysical research communications》2010,391(2):1222-38
To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPARα agonist and repressed by PPARα antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPARα. Deletion studies identified the PPRE for PPARα activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPARα directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPARα suggest that CREBH is involved in nutritional regulation. 相似文献
16.
Evans KA Shearer BG Wisnoski DD Shi D Sparks SM Sternbach DD Winegar DA Billin AN Britt C Way JM Epperly AH Leesnitzer LM Merrihew RV Xu RX Lambert MH Jin J 《Bioorganic & medicinal chemistry letters》2011,21(8):2345-2350
A series of phenoxyacetic acids as subtype selective and potent hPPARδ partial agonists is described. Many analogues were readily accessible via a single solution-phase synthetic route which resulted in the rapid identification of key structure-activity relationships (SAR), and the discovery of two potent exemplars which were further evaluated in vivo. Details of the SAR, optimization, and in vivo efficacy of this series are presented herein. 相似文献
17.
Gijsbers L Man HY Kloet SK de Haan LH Keijer J Rietjens IM van der Burg B Aarts JM 《Analytical biochemistry》2011,(1):77-83
Phosphatidylinositol (PtdIns) is phosphorylated at D-3, D-4, and/or D-5 of the inositol ring to produce seven distinct lipid second messengers known as phosphoinositides (PIs). The PI level is temporally and spatially controlled at the cytosolic face of the cellular membrane. Effectors containing PI-binding domains (e.g., PH, PX, FYVE, ENTH, FERM) associate with specific PIs. This process is crucial for the localization of a variety of cell-signaling proteins, thereby regulating intracellular membrane trafficking, cell growth and survival, cytoskeletal organization, and so on. However, quantitative assessments of protein–PI interactions are generally difficult due to insolubility of PIs in aqueous solution. Here we incorporated PIs into a lipid–protein nanoscale bilayer (nanodisc), which is applied for studying the protein–PI interactions using pull-down binding assay, fluorescence polarization, and nuclear magnetic resonance studies, each facilitating fast, quantitative, and residue-specific evaluation of the protein–PI interactions. Therefore, the PI-incorporated nanodisc could be used as a versatile tool for studying the protein–lipid interactions by various biochemical and biophysical techniques. 相似文献
18.
Linda Gijsbers Hai-Yen Man Samantha K. Kloet Laura H.J. de Haan Jaap Keijer Ivonne M.C.M. Rietjens Bart van der Burg Jac M.M.J.G. Aarts 《Analytical biochemistry》2011,(1):77
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3–3xPPRE–tata-luc or pGL4–3xPPRE–tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ12,14-prostaglandin J2. The potency to induce luciferase decreased in the following order: rosiglitazone > troglitazone = pioglitazone > netoglitazone > ciglitazone. A concentration-dependent decrease in the response to 50 nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity. 相似文献
19.
20.