首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current majority of protocols for hepatocyte differentiation of mesenchymal stem cells (MSCs) are conducted using oncostatin M (OSM) as an inducer of hepatocyte-like maturation. As leukemia inhibitory factor (LIF) and OSM share similar signaling pathways, we examined whether LIF could play a role in the hepatocyte differentiation process. A differentiation protocol was designed using LIF as a maturation cytokine and this was compared with standard and control protocols applied to human MSCs of bone marrow origin. We observed that mesenchymal-derived hepatocyte-like cells (MDHLCs) acquired similar morphological changes when exposed to LIF or to OSM. Using protein and gene expression assays, we noticed a comparable hepatic marker expression in both differentiation conditions. Furthermore, LIF and OSM allowed the acquisition of equivalent levels of hepatocyte-like functionality as attested by evaluation of urea secretion and glycogen deposition. However, no increase in the expression of hepatocyte-like features could be observed in MDHLCs after a combined exposition to LIF and OSM. In conclusion, we demonstrated that LIF can play a similar role as OSM in the hepatocyte differentiation process of human MSCs.  相似文献   

2.
Bone marrow (BM)-derived stem and progenitor cell functions including self-renewal, differentiation, survival, migration, proliferation, and mobilization are regulated by unique cell-intrinsic and -extrinsic signals provided by their microenvironment, also termed the “niche.” Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), play important roles in regulating stem and progenitor cell functions in various physiologic and pathologic responses. The low level of H2O2 in quiescent hematopoietic stem cells (HSCs) contributes to maintaining their “stemness,” whereas a higher level of H2O2 within HSCs or their niche promotes differentiation, proliferation, migration, and survival of HSCs or stem/progenitor cells. Major sources of ROS are NADPH oxidase and mitochondria. In response to ischemic injury, ROS derived from NADPH oxidase are increased in the BM microenvironment, which is required for hypoxia and hypoxia-inducible factor-1α expression and expansion throughout the BM. This, in turn, promotes progenitor cell expansion and mobilization from BM, leading to reparative neovascularization and tissue repair. In pathophysiological states such as aging, atherosclerosis, heart failure, hypertension, and diabetes, excess amounts of ROS create an inflammatory and oxidative microenvironment, which induces cell damage and apoptosis of stem and progenitor cells. Understanding the molecular mechanisms of how ROS regulate the functions of stem and progenitor cells and their niche in physiological and pathological conditions will lead to the development of novel therapeutic strategies.  相似文献   

3.
SH Tsai  PH Huang  WC Chang  HY Tsai  CP Lin  HB Leu  TC Wu  JW Chen  SJ Lin 《PloS one》2012,7(7):e41065

Background

Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs) play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear.

Methodology/Principal Findings

Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg). Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control). Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1+/Flk-1+) after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC.

Conclusions/Significance

Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions. These findings suggest that administration of zoledronate should be withheld in patients with ischemic events such as acute limb ischemia.  相似文献   

4.
The majority of hematopoietic stem/progenitor cells (HSPCs) reside in bone marrow (BM) surrounded by a specialized environment, which governs HSPC function. Here we investigated the potential role of bone remodeling cells (osteoblasts and osteoclasts) in homeostasis and stress‐induced HSPC mobilization. Peripheral blood (PB) and BM in steady/mobilized state were collected from healthy donors undergoing allogeneic transplantation and from mice treated with granulocyte colony stimulating factor (G‐CSF), parathyroid hormone (PTH), or receptor activator of nuclear factor kappa‐B ligand (RANKL). The number and the functional markers of osteoblasts and osteoclasts were checked by a series of experiments. Our data showed that the number of CD45?Ter119? osteopontin (OPN)+ osteoblasts was significantly reduced from 4,085 ± 135 cells/femur on Day 0 to 1,032 ± 55 cells/femur on Day 5 in mice (P = 0.02) and from 21.38 ± 0.66 on Day 0 to 14.78 ± 0.65 on Day 5 in healthy donors (P < 0.01). Decrease of osteoblast number leads to reduced level of HSPC mobilization regulators stromal cell‐derived factor‐1 (SDF‐1), stem cell factor (SCF), and OPN. The osteoclast number at bone surface (OC.N/B.s) was significantly increased from 1.53 ± 0.12 on Day 0 to 4.42 ± 0.46 on Day 5 (P < 0.01) in G‐CSF‐treated mice and from 0.88 ± 0.20 on Day 0 to 3.24 ± 0.31 on Day 5 (P < 0.01) in human. Serum TRACP‐5b level showed a biphasic trend during G‐CSF treatment. The ratio of osteoblasts number per bone surface (OB.N/B.s) to OC.N/B.s was changed after adding PTH plus RANKL during G‐CSF treatment. In conclusion, short term G‐CSF treatment leads to reduction of osteoblasts and stimulation of osteoclasts, and interrupting bone remodeling balance may contribute to HSPC mobilization. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Optimal timing of cell therapy for myocardial infarction (MI) appears during 5 to 14 days after the infarction. However, the potential mechanism requires further investigation. This work aimed to verify the hypothesis that myocardial stiffness within a propitious time frame might provide a most beneficial physical condition for cell lineage specification in favour of cardiac repair. Serum vascular endothelial growth factor (VEGF) levels and myocardial stiffness of MI mice were consecutively detected. Isolated bone marrow mononuclear cells (BMMNCs) were injected into infarction zone at distinct time-points and cardiac function were measured 2 months after infarction. Polyacrylamide gel substrates with varied stiffness were used to mechanically mimic the infarcted myocardium. BMMNCs were plated on the flexible culture substrates under different concentrations of VEGF. Endothelial progenitor lineage commitment of BMMNCs was verified by immunofluorescent technique and flow cytometry. Our results demonstrated that the optimal timing in terms of improvement of cardiac function occurred during 7 to 14 days after MI, which was consistent with maximized capillary density at this time domains, but not with peak VEGF concentration. Percentage of double-positive cells for DiI-labelled acetylated low-density lipoprotein uptake and fluorescein isothiocyanate (FITC)-UEA-1 (ulex europaeus agglutinin I lectin) binding had no significant differences among the tissue-like stiffness in high concentration VEGF. With the decrease of VEGF concentration, the benefit of 42 kPa stiffness, corresponding to infarcted myocardium at days 7 to 14, gradually occurred and peaked when it was removed from culture medium. Likewise, combined expressions of VEGFR2(+) , CD133(+) and CD45(-) remained the highest level on 42 kPa substrate in conditions of lower concentration VEGF. In conclusion, the optimal efficacy of BMMNCs therapy at 7 to 14 days after MI might result from non-VEGF dependent angiogenesis, and myocardial stiffness at this time domains was more suitable for endothelial progenitor lineage specification of BMMNCs. The results here highlight the need for greater attention to mechanical microenvironments in cell culture and cell therapy.  相似文献   

6.
《Cell Stem Cell》2022,29(11):1547-1561.e6
  1. Download : Download high-res image (78KB)
  2. Download : Download full-size image
  相似文献   

7.

Introduction

We analyzed the prevalence of cardiovascular (CV) disease in patients with rheumatoid arthritis (RA) and its association with traditional CV risk factors, clinical features of RA, and the use of disease-modifying antirheumatic drugs (DMARDs) in a multinational cross-sectional cohort of nonselected consecutive outpatients with RA (The Questionnaires in Standard Monitoring of Patients with Rheumatoid Arthritis Program, or QUEST-RA) who were receiving regular clinical care.

Methods

The study involved a clinical assessment by a rheumatologist and a self-report questionnaire by patients. The clinical assessment included a review of clinical features of RA and exposure to DMARDs over the course of RA. Comorbidities were recorded; CV morbidity included myocardial infarction, angina, coronary disease, coronary bypass surgery, and stroke. Traditional risk factors recorded were hypertension, hyperlipidemia, diabetes mellitus, smoking, physical inactivity, and body mass index. Unadjusted and adjusted hazard ratios (HRs) (95% confidence interval [CI]) for CV morbidity were calculated using Cox proportional hazard regression models.

Results

Between January 2005 and October 2006, the QUEST-RA project included 4,363 patients from 48 sites in 15 countries; 78% were female, more than 90% were Caucasian, and the mean age was 57 years. The prevalence for lifetime CV events in the entire sample was 3.2% for myocardial infarction, 1.9% for stroke, and 9.3% for any CV event. The prevalence for CV risk factors was 32% for hypertension, 14% for hyperlipidemia, 8% for diabetes, 43% for ever-smoking, 73% for physical inactivity, and 18% for obesity. Traditional risk factors except obesity and physical inactivity were significantly associated with CV morbidity. There was an association between any CV event and age and male gender and between extra-articular disease and myocardial infarction. Prolonged exposure to methotrexate (HR 0.85; 95% CI 0.81 to 0.89), leflunomide (HR 0.59; 95% CI 0.43 to 0.79), sulfasalazine (HR 0.92; 95% CI 0.87 to 0.98), glucocorticoids (HR 0.95; 95% CI 0.92 to 0.98), and biologic agents (HR 0.42; 95% CI 0.21 to 0.81; P < 0.05) was associated with a reduction of the risk of CV morbidity; analyses were adjusted for traditional risk factors and countries.

Conclusion

In conclusion, prolonged use of treatments such as methotrexate, sulfasalazine, leflunomide, glucocorticoids, and tumor necrosis factor-alpha blockers appears to be associated with a reduced risk of CV disease. In addition to traditional risk factors, extra-articular disease was associated with the occurrence of myocardial infarction in patients with RA.  相似文献   

8.

Introduction

The objective of the present study was to investigate the role of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis in TNF-induced mobilization of osteoclast precursors (OCPs) from bone marrow.

Methods

OCPs were generated from bone marrow cells of TNF-transgenic mice or wild-type mice treated with TNF or PBS. The percentage of CD11b+/Gr-1-/lo OCPs was assessed by fluorescence-activated cell sorting. OCP migration to the SDF-1 gradient and the osteoclast forming potency were assessed in chemotaxis/osteoclastogenic assays. SDF-1 expression was assessed by real-time RT-PCR, ELISA and immunostaining in primary bone marrow stromal cells, in the ST2 bone marrow stromal cell line, and in bones from TNF-injected mice.

Results

OCPs generated in vitro from wild-type mice migrated to SDF-1 gradients and subsequently gave rise to osteoclasts in response to RANKL and macrophage colony-stimulating factor. TNF reduced SDF-1 expression by ST2 cells. Bone marrow stromal cells from TNF-transgenic mice produced low levels of SDF-1. TNF treatment of wild-type mice decreased the SDF-1 concentration in bone marrow extracts and decreased the SDF-1 immunostaining of bone marrow stromal cells, and it also increased the circulating OCP numbers. The percentage of bone marrow CXCR4+ OCPs was similar in TNF-transgenic mice and wild-type littermates and in TNF-treated and PBS-treated wild-type mice.

Conclusion

Systemically elevated TNF levels inhibit bone marrow stromal cell production of SDF-1 and increase the release of bone marrow OCPs to the peripheral blood. Disruption of the SDF-1/CXCR4 axis by TNF may play an important role in mediating OCP mobilization from the bone marrow cavity in chronic inflammatory arthritis.  相似文献   

9.
Autologous bone marrow cell transplantation (BMCs-Tx) is a promising novel option for treatment of cardiovascular disease. We analysed in a randomized controlled study the influence of the intracoronary autologous freshly isolated BMCs-Tx on the mobilization of bone marrow-derived circulating progenitor cells (BM-CPCs) in patients with acute myocardial infarction (AMI). Sixty-two patients with AMI were randomized to either freshly isolated BMCs-Tx or to a control group without cell therapy. Peripheral blood (PB) concentrations of CD34/45(+) - and CD133/45(+)-circulating progenitor cells were measured by flow cytometry in 42 AMI patients with cell therapy as well as in 20 AMI patients without cell therapy as a control group on days 1, 3, 5, 7, 8 and 3, 6 as well as 12 months after AMI. Global ejection fraction (EF) and the size of infarct area were determined by left ventriculography. We observed in patients with freshly isolated BMCs-Tx at 3 and 12 months follow up a significant reduction of infarct size and increase of global EF as well as infarct wall movement velocity. The mobilization of CD34/45(+) and CD133/45(+) BM-CPCs significantly increased with a peak on day 7 as compared to baseline after AMI in both groups (CD34/45(+): P < 0.001, CD133/45(+): P < 0.001). Moreover, this significant mobilization of BM-CPCs existed 3, 6 and 12 months after cell therapy compared to day 1 after AMI. In control group, there were no significant differences of CD34/45(+) and CD133/45(+) BM-CPCs mobilization between day 1 and 3, 6 and 12 months after AMI. Intracoronary transplantation of autologous freshly isolated BMCs by use of point of care system in patients with AMI may enhance and prolong the mobilization of CD34/45(+) and CD133/45(+) BM-CPCs in PB and this might increase the regenerative potency after AMI.  相似文献   

10.
Summary The methods of therapeutic angiogenesis include endothelial progenitor cell (EPC) mobilization with cytokines [e.g., granulocyte colony-stimulating factor (G-CSF)] and bone marrow mononuclear cell (BMMNC) transplantation. Combined angiogenic therapies may be superior to a single angiogenic therapy for the treatment of limb ischemia. Therefore, we investigated whether the angiogenic efficacy of a combination of two angiogenic strategies is superior to either strategy alone. One day after the surgical induction of hindlimb ischemia, mice were randomized to receive either no treatment, EPC mobilization with G-CSF administration, BMMNC transplantation using a fibrin matrix, or a combination of EPC mobilization with BMMNC transplantation using a fibrin matrix. EPC mobilization with G-CSF or BMMNC transplantation using a fibrin matrix significantly increased the microvessel density compared with no treatment. Importantly, a combination of EPC mobilization with BMMNC transplantation using a fibrin matrix further increased the densities of microvessels and BrdU-positive capillaries compared to either strategy alone. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) expression was higher in the EPC mobilization with G-CSF or BMMNC transplantation group than in the no treatment group. The combination therapy of EPC mobilization with G-CSF and BMMNC transplantation resulted in more extensive expression of bFGF and VEGF than the single therapy of either EPC mobilization with G-CSF treatment or BMMNC transplantation. This study demonstrates that the combination therapy of BMMNC transplantation and EPC mobilization potentiates the angiogenic efficacy of either single therapy in mouse limb ischemia models.  相似文献   

11.
Cardiomyocyte apoptosis is an important contributor to the progressive cardiac dysfunction that culminates in congestive heart failure. Bone marrow cells (BMCs) restore cardiac function following ischaemia, and transplanted BMCs have been reported to fuse with cells of diverse tissues. We previously demonstrated that the myogenic conversion of bone marrow stromal cells increased nearly twofold when the cells were co‐cultured with apoptotic (TNF‐α treated) cardiomyocytes. We therefore hypothesized that cell fusion may be a major mechanism by which BMCs rescue cardiomyocytes from apoptosis. We induced cellular apoptosis in neonatal rat cardiomyocytes by treatment with hydrogen peroxide (H2O2). The TUNEL assay demonstrated an increase in apoptosis from 4.5 ± 1.3% in non‐treated cells to 19.0 ± 4.4% (< 0.05) in treated cells. We subsequently co‐cultured the apoptotic cardiomyocytes with BMCs and assessed cell fusion using flow cytometry. Fusion was rare in the non‐treated control cardiomyocytes (0.3%), whereas H2O2 treatment led to significantly higher fusion rates than the control group (< 0.05), with the highest rate of 7.9 ± 0.3% occurring at 25 μM H2O2. We found an inverse correlation between cell fusion and completion of cardiomyocyte apoptosis (R2 = 0.9863). An in vivo mouse model provided evidence of cell fusion in the infarcted myocardium following the injection of BMCs. The percentage of cells undergoing fusion was significantly higher in mice injected with BMCs following infarction (8.8 ± 1.3%) compared to mice that did not undergo infarction (4.6 ± 0.6%, < 0.05). Enhancing cell fusion may be one method to preserve cardiomyocytes following myocardial infarction, and this new approach may provide a novel target for cardiac regenerative therapies.  相似文献   

12.
Intravenously administered cuprozinc-superoxide dismutase in X-irradiated mice hastens the recovery of peripheral blood cells. This effect is consistent with protection of the pluripotent stem cells by the enzyme. Amongst the bone marrow cells committed to differentiation along the myeloid pathway, there exists in mice a subpopulation of macrophage progenitor cells that is inactivated by superoxide radicals, generated photochemically or by X-rays. This cell killing effect is inhibited by superoxide dismutase, in part because it acts intracellularly. Human bone marrow also contain a superoxide-sensitive subpopulation of myeloid progenitor cells that is protected by superoxide dismutase but not by catalase. As well, human myeloid progenitor cells contain a subpopulation with enhanced sensitivity to X-rays in vitro. Treatment of these cells with exogenous superoxide dismutase reduces the sensitivity to X-rays by a factor of 2.  相似文献   

13.
We have previously obtained monoclonal bone marrow stem cells from adult rats (rMSCs) and induced them into phenotypic neurons. In the present study, we aimed to induce rMSCs into epithelial cells by culturing them onto compartmentalized permeable supports, which have been used for growing a variety of polarized epithelia in culture. Hematoxylin staining showed that after 4 days grown on permeable supports, rMSCs formed an epithelial-like monolayer. Immunofluorescence of the permeably-supported monolayers, but not the rMSCs grown in culture flasks, showed positive signals for epithelial markers, cytokeratin 5 & 8. RT-PCR results also showed the mRNA expression of epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) as well as tight junction protein ZO-1 in the rMSC-derived monolayers grown on permeable supports but absent from those grown in culture flasks. However, western blot only detected protein expression of ZO-1 but not ENaC nor CFTR. The short-circuit current measurements showed that the rMSC-derived monolayers grown on permeable supports exhibited a trans-monolayer resistance of 30-50 Omega cm(2); however, the monolayers did not respond to activators or blockers of CFTR or ENaC. The results suggest that compartmentalized or polarized culture conditions provide a suitable environment for rMSCs to differentiate into epithelial progenitor cells with tight junction formation; however, this condition is not sufficient for functional expression of epithelial ion channels associated with well-differentiated epithelia.  相似文献   

14.
Vascular endothelial growth factor (VEGF) has been shown to promote neovascularization in animal models and, more recently, in human subjects. This feature has been assumed to result exclusively from its direct effects on fully differentiated endothelial cells, i.e. angiogenesis. Given its regulatory role in both angiogenesis and vasculogenesis during fetal development, we investigated the hypothesis that VEGF may modulate endothelial progenitor cell (EPC) kinetics for postnatal neovascularization. Indeed, we observed an increase in circulating EPCs following VEGF administration in vivo. VEGF-induced mobilization of bone marrow-derived EPCs resulted in increased differentiated EPCs in vitro and augmented corneal neovascularization in vivo. These findings thus establish a novel role for VEGF in postnatal neovascularization which complements its known impact on angiogenesis.  相似文献   

15.
16.
17.
It was shown using complement-dependent cytolysis and monoclonal antibodies against CD4, CD8, and NK1.1 antigens that the cortisone-resistant CD3+4-8-NK1.1(-)-thymocytes spontaneously secreted a chemotactic transmitter inducing the release and directed migration of bone marrow cells. When estimating the general profile of the cytokines of these thymocytes by PCR with revertase, it was demonstrated the cells in question did not express cytokines with colony stimulating activities (SCF, IL-3, or GM-CSF) or cytokines affecting the migration of bone marrow stem elements (IL-2, 4, or 7). In addition, an active expression of gene bcl-2 was detected. Thus, the chemotactic cytokine inducing the release of bone marrow stem elements is a product of the cortisone-resistant long-living CD3+4-8-NK1.1(-)-T-cells of the thymus.  相似文献   

18.
《Cytotherapy》2023,25(9):946-955
Background aimsWhile distraction osteogenesis (DO) achieves substantial bone regeneration, prolonged fixation may lead to infections. Existing stem cell and physical therapies have limitations, requiring the development of novel therapeutic approaches. Here, we evaluated high-mobility group box 1 (HMGB1) as a novel therapeutic target for DO treatment.MethodsMicro-computed tomography (Micro-CT) analysis and histological staining of samples obtained from tibial DO model mice was performed. Transwell migration, wound healing, and proliferation assays were also performed on cultured human mesenchymal stem cells (hMSCs) and human umbilival vein endothelial cells (HUVECs). Tube formation assay was performed on HUVECs, whereas osteogenic differentiation assay was performed on hMSCs.ResultsMicro-CT analysis and histological staining of mouse samples revealed that HMGB1 promotes bone regeneration during DO via the recruitment of PDGFRα and Sca-1 positve (PαS+) cells and endothelial progenitor cells. Furthermore, HMGB1 accelerated angiogenesis during DO, promoted the migration and osteogenic differentiation of hMSCs as well as the proliferation, migration and angiogenesis of HUVECs in vitro.ConclusionsOur findings suggest that HMGB1 has a positive influence on endogenous stem/progenitor cells, representing a novel therapeutic target for the acceleration of DO-driven bone regeneration.  相似文献   

19.
20.
Objectives:To investigate the effect of neurotrophin-3 (NT-3) on osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).Methods:Osteogenic differentiation was detected by alkaline phosphatase (ALP) staining and alizarin red staining (ARS). Adipogenic differentiation was detected by oil red O (ORO) staining. The expression of bone-related genes (Runx2, Osterix, OCN, ALP) and lipogenic genes (FABP4, PPAR, CEBP, LPL) was detected by real-time quantitative polymerase chain reaction (real-time qPCR). The expression of p-Akt and Akt protein was detected by Western blot assay.Results:ALP staining and ARS staining showed that the overexpression of NT-3 could promote the differentiation into osteoblasts, while knockdown of NT-3 could inhibit that. Real-time qPCR showed that the overexpression of NT-3 could increase the expression of osteoblast genes, while knockdown of NT-3 could inhibit that. ORO staining showed that the overexpression of NT-3 could inhibit the differentiation into adipogenesis, while knockdown of NT-3 can promote that. Real-time qPCR showed that the overexpression of NT-3 could reduce the expression of lipogenic genes. while knockdown NT-3 could increase that. In addition, the overexpression of NT-3 increased p-Akt/Akt levels significantly, while knockdown NT-3 reduced that significantly.Conclusion:NT-3 could promote the differentiation of mouse BMSCs into osteoblasts and inhibit their differentiation into adipogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号