首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic factor VEGF.  相似文献   

2.
Aminopeptidase A (APA; EC 3.4.11.7) is a transmembrane metalloprotease with several functions in tumor angiogenesis. To investigate the role of APA in the process of ischemia-induced angiogenesis, we evaluated the cellular angiogenic responses under hypoxic conditions and the process of perfusion recovery in the hindlimb ischemia model of APA-deficient (APA-KO; C57Bl6/J strain) mice.Western blotting of endothelial cells (ECs) isolated from the aorta of APA-KO mice revealed that the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein in response to hypoxic challenge was blunted. Regarding the proteasomal ubiquitination, a proteasome inhibitor MG-132 restored the reduced accumulation of HIF-1α in ECs from APA-KO mice similar to control mice under hypoxic conditions. These were associated with decreased growth factor secretion and capillary formation in APA-KO mice. In the hindlimb ischemia model, perfusion recovery in APA-KO mice was decreased in accordance with a significantly lower capillary density at 2 weeks. Regarding vasculogenesis, no differences were observed in cell populations and distribution patterns between wild type and APA-KO mice in relation to endothelial progenitor cells.Our results suggested that Ischemia-induced angiogenesis is impaired in APA-KO mice partly through decreased HIF-1α stability by proteasomal degradation and subsequent suppression of HIF-1α-driven target protein expression such as growth factors. APA is a functional target for ischemia-induced angiogenesis.  相似文献   

3.
4.
Loss of Id1 in the bone marrow (BM) severely impairs tumor angiogenesis resulting in significant inhibition of tumor growth. This phenotype has been associated with the absence of circulating endothelial progenitor cells (EPCs) in the peripheral blood of Id1 mutant mice. However, the manner in which Id1 loss in the BM controls EPC generation or mobilization is largely unknown. Using genetically modified mouse models we demonstrate here that the generation of EPCs in the BM depends on the ability of Id1 to restrain the expression of its target gene p21. Through a series of cellular and functional studies we show that the increased myeloid commitment of BM stem cells and the absence of EPCs in Id1 knockout mice are associated with elevated p21 expression. Genetic ablation of p21 rescues the EPC population in the Id1 null animals, re-establishing functional BM-derived angiogenesis and restoring normal tumor growth. These results demonstrate that the restraint of p21 expression by Id1 is one key element of its activity in facilitating the generation of EPCs in the BM and highlight the critical role these cells play in tumor angiogenesis.  相似文献   

5.

Background

Reactive oxygen species (ROS) play an important role in angiogenesis in endothelial cells (ECs) in vitro and neovascularization in vivo. However, little is known about the role of endogenous vascular hydrogen peroxide (H2O2) in postnatal neovascularization.

Methodology/Principal Findings

We used Tie2-driven endothelial specific catalase transgenic mice (Cat-Tg mice) and hindlimb ischemia model to address the role of endogenous H2O2 in ECs in post-ischemic neovascularization in vivo. Here we show that Cat-Tg mice exhibit significant reduction in intracellular H2O2 in ECs, blood flow recovery, capillary formation, collateral remodeling with larger extent of tissue damage after hindlimb ischemia, as compared to wild-type (WT) littermates. In the early stage of ischemia-induced angiogenesis, Cat-Tg mice show a morphologically disorganized microvasculature. Vascular sprouting and tube elongation are significantly impaired in isolated aorta from Cat-Tg mice. Furthermore, Cat-Tg mice show a decrease in myeloid cell recruitment after hindlimb ischemia. Mechanistically, Cat-Tg mice show significant decrease in eNOS phosphorylation at Ser1177 as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) in ischemic muscles, which is required for inflammatory cell recruitment to the ischemic tissues. We also observed impaired endothelium-dependent relaxation in resistant vessels from Cat-Tg mice.

Conclusions/Significance

Endogenous ECs-derived H2O2 plays a critical role in reparative neovascularization in response to ischemia by upregulating adhesion molecules and activating eNOS in ECs. Redox-regulation in ECs is a potential therapeutic strategy for angiogenesis-dependent cardiovascular diseases.  相似文献   

6.
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/-Id3-/- host, which were associated with VEGF-receptor-1-positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.  相似文献   

7.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local over-expression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration, and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.  相似文献   

8.
9.
Cyclosporin A (CsA) improves the success rate of transplantation. The CD26/dipeptidylpeptidase IV (DPP IV) system plays a critical role in mobilizing endothelial progenitor cells (EPCs) from bone marrow. This study investigated whether CsA manipulates CD26/DPP IV activity and increases EPC mobilization. C57BL/6 mice were divided into control and CsA-treated groups. Before and after hindlimb ischemia was induced, circulating EPC number and serum levels of different cytokines were measured. Compared with the controls, CsA treatment significantly increased the blood levels of stroma-derived factor-1alpha and stem cell factor after ischemic stress (P < 0.001). The CsA group displayed a significant increase in the number of circulating EPCs (sca-1+KDR+ and c-kit+CD31+ EPCs, both P < 0.05). In vivo, CsA caused a significant increase in the numbers of EPCs incorporated into the Matrigel and ischemic limbs (P < 0.05). In the peripheral blood, CsA significantly decreased CD26+ cell numbers and attenuated the plasma CD26/DPP IV activity (P < 0.001). Furthermore, short-term CsA treatment significantly improved the perfusion of ischemic limbs and decreased the spontaneous digital amputation rate. In summary, CsA manipulates the mobilization of EPCs into the circulation via the CD26/DPP IV system. Short-term CsA treatment has beneficial effects on angiogenesis of ischemic tissues.  相似文献   

10.
Both granulocyte colony-stimulating factor (G-CSF) and cyclophosphamide (CY) are employed in the clinic as mobilizing agents to stimulate the egress of haematopoietic stem/progenitor cells (HSPC) from bone marrow (BM) into peripheral blood (PB). However, although both compounds are effective, the simultaneous administration of G-CSF + CY allows for optimal mobilization. The aim of this study was to compare morphological changes in major haematopoietic organs in mice mobilized by G-CSF + CY. We employed the standard G-CSF + CY mobilization protocol, in which mice were injected at day 0 with a single dose of CY followed by daily injection of G-CSF for 6 consecutive days. We noticed that the cytoreductive effect of CY on BM and spleen tissue was compensated at day 2 by the pro-proliferative effect of G-CSF. Furthermore, as evidenced by histological examination of BM sections at day 4, egress of haematopoietic cells from BM was accelerated by 2 days as compared to mobilization by G-CSF or CY alone; also, by day 6 there was accumulation of early haematopoietic (Thy-l(low) c-kit+) cells in the spleens and livers of mobilized animals. This implies that HSPC that are mobilized from BM and circulate in PB may 'home' to peripheral organs. We envision that such an accumulation of these cells in the spleen (which is a major haematopoietic organ in mouse) allows them to participate in haematopoietic reconstitution. Their homing to other sites (for example the liver) is evidence that BM-derived stem cells are playing a pivotal role in organ/tissue regeneration. The potential involvement of major chemoattractants for stem cells, like stromal-derived factor-1 which is induced by CY in various regenerating organs such as the liver, requires further study. We conclude that inclusion of CY into mobilization protocols on the one hand efficiently increases the egress of HSPC from the BM, but on the other hand may lead to the relocation of BM stem cell pools to peripheral tissues.  相似文献   

11.
Th2-type inflammation spontaneously shown in Bcl6-knockout (KO) mice is mainly caused by bone marrow (BM)-derived nonlymphoid cells. However, the function of dendritic cells (DCs) in Bcl6-KO mice has not been reported. We show in this article that the numbers of CD4(+) conventional DCs (cDCs) and CD8α(+) cDCs, but not of plasmacytoid DCs, were markedly reduced in the spleen of Bcl6-KO mice. Generation of cDCs from DC progenitors in BM cells was perturbed in the spleen of irradiated wild-type (WT) mice transferred with Bcl6-KO BM cells, indicating an intrinsic effect of Bcl6 in cDC precursors. Although cDC precursors were developed in a Bcl6-KO BM culture with Fms-like tyrosine kinase 3 ligand, the cDC precursors were more apoptotic than WT ones. Also p53, one of the molecular targets of Bcl6, was overexpressed in the precursors. The addition of a p53 inhibitor to Bcl6-KO BM culture protected apoptosis, suggesting that Bcl6 is required by cDC precursors for survival by controlling p53 expression. Furthermore, large numbers of T1/ST2(+) Th2 cells were naturally developed in the spleen of Bcl6-KO mice. Th2 skewing was accelerated in the culture of WT CD4 T cells stimulated with Ags and LPS-activated Bcl6-KO BM-derived DCs, which produced more IL-6 and less IL-12 than did WT DCs; the addition of anti-IL-6 Abs to the culture partially abrogated the Th2 skewing. These results suggest that Bcl6 is required in cDC precursors for survival and in activated DCs for modulating the cytokine profile.  相似文献   

12.
Tano N  Kim HW  Ashraf M 《PloS one》2011,6(10):e23114
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.  相似文献   

13.
Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2) expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages) into the injured nerve and spinal cord by using bone marrow (BM) chimeric mice by crossing wildtype (WT) and TRPM2-knockout (TRPM2-KO) mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP+) BM cells (TRPM2BM+/Rec+, TRPM2BM–/Rec+, TRPM2BM+/Rec–, and TRPM2BM–/Rec– mice). Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2BM+/Rec+ mice was attenuated in TRPM2BM–/Rec+, TRPM2BM+/Rec–, and TRPM2BM–/Rec– mice. The numbers of GFP+ BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP+ BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2BM+/Rec+ mice. However, the numbers of GFP/Iba1+ resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal-resident microglia. The spinal infiltration of macrophages mediated by TRPM2 may contribute to the pathogenesis of neuropathic pain.  相似文献   

14.
SH Tsai  PH Huang  WC Chang  HY Tsai  CP Lin  HB Leu  TC Wu  JW Chen  SJ Lin 《PloS one》2012,7(7):e41065

Background

Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs) play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear.

Methodology/Principal Findings

Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg). Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control). Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1+/Flk-1+) after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC.

Conclusions/Significance

Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions. These findings suggest that administration of zoledronate should be withheld in patients with ischemic events such as acute limb ischemia.  相似文献   

15.

Objective

During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs) mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE) secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated.

Methods and Results

EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05). The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not.

Conclusion

These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor, β 2 adrenoceptor and meanwhile Akt/eNOS signaling pathway.  相似文献   

16.
The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1) is expressed on human CD34(+) and mouse Lin(-)Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1, but not VEGFR2, blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Placental growth factor (PlGF), which signals through VEGFR1, restored early and late phases of hematopoiesis following BM suppression. PlGF enhanced early phases of BM recovery directly through rapid chemotaxis of VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9, mediating the release of soluble Kit ligand. Thus, PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative BM microenvironment, favoring differentiation, mobilization and reconstitution of hematopoiesis.  相似文献   

17.
ABSTRACT: BACKGROUND: Far infra-red (IFR) therapy was shown to exert beneficial effects in cardiovascular system, but effects of IFR on endothelial progenitor cell (EPC) and EPC-related vasculogenesis remain unclear. We hypothesized that IFR radiation can restore blood flow recovery in ischemic hindlimb in diabetic mice by enhancement of EPCs functions and homing process.Materials and methodsStarting at 4 weeks after the onset of diabetes, unilateral hindlimb ischemia was induced in streptozotocine (STZ)-induced diabetic mice, which were divided into control and IFR therapy groups (n = 6 per group). The latter mice were placed in an IFR dry sauna at 34[DEGREE SIGN]C for 30 min once per day for 5 weeks. RESULTS: Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio in the thermal therapy group was significantly increased beyond that in controls, and significantly greater capillary density was seen in the IFR therapy group. Flow cytometry analysis showed impaired EPCs (Sca-1+/Flk-1+) mobilization after ischemia surgery in diabetic mice with or without IFR therapy (n = 6 per group). However, as compared to those in the control group, bone marrow-derived EPCs differentiated into endothelial cells defined as GFP+/CD31+ double-positive cells were significantly increased in ischemic tissue around the vessels in diabetic mice that received IFR radiation. In in-vitro studies, cultured EPCs treated with IFR radiation markedly augmented high glucose-impaired EPC functions, inhibited high glucose-induced EPC senescence and reduced H2O2 production. Nude mice received human EPCs treated with IFR in high glucose medium showed a significant improvement in blood flow recovery in ischemic limb compared to those without IFR therapy. IFR therapy promoted blood flow recovery and new vessel formation in STZ-induced diabetic mice. CONCLUSIONS: Administration of IFR therapy promoted collateral flow recovery and new vessel formation in STZ-induced diabetic mice, and these beneficial effects may derive from enhancement of EPC functions and homing process.  相似文献   

18.
Endothelial nitric oxide synthase (eNOS) is essential for neovascularization. Here we show that the impaired neovascularization in mice lacking eNOS is related to a defect in progenitor cell mobilization. Mice deficient in eNOS (Nos3(-/-)) show reduced vascular endothelial growth factor (VEGF)-induced mobilization of endothelial progenitor cells (EPCs) and increased mortality after myelosuppression. Intravenous infusion of wild-type progenitor cells, but not bone marrow transplantation, rescued the defective neovascularization of Nos3(-/-) mice in a model of hind-limb ischemia, suggesting that progenitor mobilization from the bone marrow is impaired in Nos3(-/-) mice. Mechanistically, matrix metalloproteinase-9 (MMP-9), which is required for stem cell mobilization, was reduced in the bone marrow of Nos3(-/-) mice. These findings indicate that eNOS expressed by bone marrow stromal cells influences recruitment of stem and progenitor cells. This may contribute to impaired regeneration processes in ischemic heart disease patients, who are characterized by a reduced systemic NO bioactivity.  相似文献   

19.
Recent results suggest that bone marrow (BM)-derived hematopoietic cells are major components of tumor stroma and play crucial roles in tumor growth and angiogenesis. An E-type prostaglandin is known to regulate angiogenesis. We examined the role of BM-derived cells expressing an E-type prostaglandin receptor subtype (EP3) in tumor-induced angiogenesis and tumor growth. The replacement of wild-type (WT) BM with BM cells (BMCs) from green fluorescent protein (GFP) transgenic mice revealed that the stroma developed via the recruitment of BMCs. Selective knockdown of EP3 by recruitment of genetically modified BMCs lacking EP3 receptors was performed by transplantation of BMCs from EP3 knockout (EP3−/−) mice. Tumor growth and tumor-associated angiogenesis were suppressed in WT mice transplanted with BMCs from EP3−/− mice, but not in mice transplanted with BMCs from either EP1−/−, EP2−/−, or EP4−/− mice. Immunohistochemical analysis revealed that vascular endothelial growth factor (VEGF) expression was suppressed in the stroma of mice transplanted with BMCs from EP3−/− mice. EP3 signaling played a significant role in the recruitment of VEGFR-1- and VEGFR-2-positive cells from the BM to the stroma. These results indicate that the EP3 signaling expressed in bone marrow-derived cells has a crucial role in tumor-associated angiogenesis and tumor growth with upregulation of the expression of the host stromal VEGF together with the recruitment of VEGFR-1/VEGFR-2-positive. The present study suggests that the blockade of EP3 signaling and the recruitment of EP3-expressing stromal cells may become a novel strategy to treat solid tumors.  相似文献   

20.
The chemokine stroma-derived factor (SDF)-1, and its receptor, CXCR-4, have been shown to be essential for the translocation of hemopoietic stem cells from the fetal liver to the bone marrow (BM). We hypothesized that if CXCR-4 plays a crucial role in the localization of human hemopoiesis, stem cells from distinct tissue sources should demonstrate distinct CXCR-4 expression or signaling profiles. CD34(+) cells from BM were compared with blood: either mobilized peripheral blood or umbilical cord blood. Unexpectedly, significantly higher levels of CXCR-4 surface expression on CD34(+) cells from blood sources, mobilized peripheral blood, or cord blood were observed compared with BM (p = 0.0005 and p = 0.002, respectively). However, despite lower levels of CXCR-4, responsiveness of the cells to SDF-1 as measured by either calcium flux or transmigration was proportionally greatest in cells derived from BM. Further, internalization of CXCR-4 in response to ligand, associated with receptor desensitization, was significantly lower on BM-derived cells. Therefore, preserved chemokine receptor signaling was highly associated with marrow rather than blood localization. To test the functional effects of perturbing CXCR-4 signaling, adult mice were exposed to the methionine-SDF-1beta analog that induces prolonged down-regulation/desensitization of CXCR-4 and observed mobilization of Lin(-), Sca-1(+), Thy-1(low), and c-kit(+) hemopoietic progenitor cells to the peripheral blood with a >30-fold increase compared with PBS control (p = 0.0007 day 1 and p = 0.004 day 2). These data demonstrate that CXCR-4 expression and function can be dissociated in progenitor cells and that desensitization of CXCR-4 induces stem cell entry into the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号