首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosis has two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2 gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2 is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2 at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement.  相似文献   

2.
Rv1106c (hsd; 3β-hydroxysteroid dehydrogenase) is required by Mycobacterium tuberculosis for growth on cholesterol as a sole carbon source, whereas Rv3409c is not. Mutation of Rv1106c does not reduce Mycobacterium tuberculosis growth in infected macrophages or guinea pigs. We conclude that cholesterol is not required as a nutritional source during infection.  相似文献   

3.
4.
Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-kappaB and c-Jun N-terminal kinase (JNK), which is essential for LMP1 oncogenic activity. Genetic analysis has revealed that tumor necrosis factor receptor-associated factor 6 (TRAF6) is an indispensable intermediate of LMP1 signaling leading to activation of both NF-kappaB and JNK. However, the mechanism by which LMP1 engages TRAF6 for activation of NF-kappaB and JNK is not well understood. Here we demonstrate that TAK1 mitogen-activated protein kinase kinase kinase and TAK1-binding protein 2 (TAB2), together with TRAF6, are recruited to LMP1 through its N-terminal transmembrane region. The C-terminal cytoplasmic region of LMP1 facilitates the assembly of this complex and enhances activation of JNK. In contrast, IkappaB kinase gamma is recruited through the C-terminal cytoplasmic region and this is essential for activation of NF-kappaB. Furthermore, we found that ablation of TAK1 resulted in the loss of LMP1-induced activation of JNK but not of NF-kappaB. These results suggest that an LMP1-associated complex containing TRAF6, TAB2, and TAK1 plays an essential role in the activation of JNK. However, TAK1 is not an exclusive intermediate for NF-kappaB activation in LMP1 signaling.  相似文献   

5.
6.
PKB/Akt, S6K1 and SGK are related protein kinases activated in a PI 3-kinase-dependent manner in response to insulin/growth factors signalling. Activation entails phosphorylation of these kinases at two residues, the T-loop and the hydrophobic motif. PDK1 activates S6K, SGK and PKB isoforms by phosphorylating these kinases at their T-loop. We demonstrate that a pocket in the kinase domain of PDK1, termed the 'PIF-binding pocket', plays a key role in mediating the interaction and phosphorylation of S6K1 and SGK1 at their T-loop motif by PDK1. Our data indicate that prior phosphorylation of S6K1 and SGK1 at their hydrophobic motif promotes their interaction with the PIF-binding pocket of PDK1 and their T-loop phosphorylation. Thus, the hydrophobic motif phosphorylation of S6K and SGK converts them into substrates that can be activated by PDK1. In contrast, the PIF-binding pocket of PDK1 is not required for the phosphorylation of PKBalpha by PDK1. The PIF-binding pocket represents a substrate recognition site on a protein kinase that is only required for the phosphorylation of a subset of its physiological substrates.  相似文献   

7.
The activation peptide of vertebrate trypsinogens contains a highly conserved tetra-aspartate sequence (Asp(19-22) in humans) preceding the Lys-Ile scissile bond. A large body of research has defined the primary role of this acidic motif as a specific recognition site for enteropeptidase, the physiological activator of trypsinogen. In addition, the acidic stretch was shown to contribute to the suppression of autoactivation. In the present study, we determined the relative importance of these two activation peptide functions in human cationic trypsinogen. Individual Ala replacements of Asp(19-22) had minimal or no effect on trypsinogen activation catalyzed by human enteropeptidase. Strikingly, a tetra-Ala(19-22) trypsinogen mutant devoid of acidic residues in the activation peptide was still a highly specific substrate for human, but not for bovine, enteropeptidase. In contrast, an intact Asp(19-22) motif was critical for autoactivation control. Thus, single Ala mutations of Asp(19), Asp(20) and Asp(21) resulted in 2-3-fold increased autoactivation, whereas the Asp(22) --> Ala mutant autoactivated at a 66-fold increased rate. These effects were multiplicative in the tri-Ala(19-21) and tetra-Ala(19-22) mutants. Structural modeling revealed that the conserved hydrophobic S2 subsite of trypsin and the unique Asp(218), which forms part of the S3-S4 subsite, participate in distinct inhibitory interactions with the activation peptide. Finally, mutagenesis studies confirmed the significance of the negative charge of Asp(218) in autoactivation control. The results demonstrate that in human cationic trypsinogen the Asp(19-22) motif per se is not required for enteropeptidase recognition, whereas it is essential for maximal suppression of autoactivation. The evolutionary selection of Asp(218), which is absent in the large majority of vertebrate trypsins, provides an additional mechanism of autoactivation control in the human pancreas.  相似文献   

8.
9.
Dipeptidyl peptidase I (DPPI) is the sole activator in vivo of several granule-associated serine proteases of cytotoxic lymphocytes. In vitro, DPPI also activates mast cell chymases and tryptases. To determine whether DPPI is essential for their activation in vivo, we used enzyme histochemical and immunohistochemical approaches and solution-based activity assays to study these enzymes in tissues and bone marrow-derived mast cells (BMMCs) from DPPI +/+ and DPPI -/- mice. We find that DPPI -/- mast cells contain normal amounts of immunoreactive chymases but no chymase activity, indicating that DPPI is essential for chymase activation and suggesting that DPPI -/- mice are functional chymase knockouts. The absence of DPPI and chymase activity does not affect the growth, granularity, or staining characteristics of BMMCs and, despite prior predictions, does not alter IgE-mediated exocytosis of histamine. In contrast, the level of active tryptase (mMCP-6) in DPPI -/- BMMCs is 25% that of DPPI +/- BMMCs. These findings indicate that DPPI is not essential for mMCP-6 activation but does influence the total amount of active mMCP-6 in mast cells and therefore may be an important, but not exclusive mechanism for tryptase activation.  相似文献   

10.

Background

Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.

Methodology/Principal Findings

Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.

Conclusions/Significance

We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells.  相似文献   

11.
Rac1 is a small GTPase that regulates the actin cytoskeleton but also other cellular processes. To investigate the function of Rac1 in skin, we generated mice with a keratinocyte-restricted deletion of the rac1 gene. Rac1-deficient mice lost nearly all of their hair within a few weeks after birth. The nonpermanent part of mutant hair follicles developed constrictions; lost expression of hair follicle-specific keratins, E-cadherin, and alpha6 integrin; and was eventually removed by macrophages. The permanent part of hair follicles and the sebaceous glands were maintained, but no regrowth of full-length hair follicles was observed. In the skin of mutant mice, epidermal keratinocytes showed normal differentiation, proliferation, cell-cell contacts, and basement membrane deposition, demonstrating no obvious defects of Rac1-deficient epidermis in vivo. In vitro, Rac1-null keratinocytes displayed a strong spreading defect and slightly impaired adhesion. These data show that Rac1 plays an important role in sustaining the integrity of the lower part of hair follicles but not in maintenance of the epidermis.  相似文献   

12.
13.
We here identify Mai1p, a homologue of the autophagy protein Aut10p, as a novel component essential for proaminopeptidase I (proAPI) maturation under non-starvation conditions. In mai1Delta cells mature vacuolar proteinases are detectable and vacuolar acidification is normal. In mai1Delta cells autophagy occurs, though at a somewhat reduced level. This is indicated by proAPI maturation during starvation and accumulation of autophagic bodies during starvation with phenylmethylsulfonyl fluoride. Homozygous diploid mai1Delta cells sporulate, but with a slightly reduced frequency. Biologically active Ha-tagged Mai1p, chromosomally expressed under its native promoter, is at least in part peripherally membrane-associated. In indirect immunofluorescence it localizes to the vacuolar membrane or structures nearby. In some cells Ha-tagged Mai1p appears concentrated at regions adjacent to the nucleus.  相似文献   

14.
15.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in animals and some bacteria. Lysine-313 of the mouse erythroid aminolevulinate synthase was recently identified to be linked covalently to the pyridoxal 5'-phosphate cofactor (Ferreira GC, Neame PJ, Dailey HA, 1993, Protein Sci 2:1959-1965). Here we report on the effect of replacement of aminolevulinate synthase lysine-313 by alanine, histidine, and glycine, using site-directed mutagenesis. Mutant enzymes were purified to homogeneity, and the purification yields were similar to those of the wild-type enzyme. Although their absorption spectra indicate that the mutant enzymes bind pyridoxal 5'-phosphate, they bind noncovalently. However, addition of glycine to the mutant enzymes led to the formation of external aldimines. The formation of an external aldimine between the pyridoxal 5'-phosphate cofactor and the glycine substrate is the first step in the mechanism of the aminolevulinate synthase-catalyzed reaction. In contrast, lysine-313 is an essential catalytic residue, because the K313-directed mutant enzymes have no measurable activity. In summary, site-directed mutagenesis of the aminolevulinate synthase active-site lysine-313, to alanine (K313A), histidine (K313H), or glycine (K313G) yields enzymes that bind the pyridoxal 5'-phosphate cofactor and the glycine substrate to produce external aldimines, but which are inactive. This suggests that lysine-313 has a functional role in catalysis.  相似文献   

16.
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1.  相似文献   

17.
We studied molecular and functional properties of Arabidopsis phosphomannose isomerase isoenzymes (PMI1 and PMI2) that catalyze reversible isomerization between D-fructose 6-phosphate and D-mannose 6-phosphate (Man-6P). The apparent K(m) and V(max) values for Man-6P of purified recombinant PMI1 were 41.3+/-4.2 microm and 1.89 micromol/min/mg protein, respectively, whereas those of purified recombinant PMI2 were 372+/-13 microm and 22.5 micromol/min/mg protein, respectively. Both PMI1 and PMI2 were inhibited by incubation with EDTA, Zn(2+), Cd(2+), and L-ascorbic acid (AsA). Arabidopsis PMI1 protein was constitutively expressed in both vegetative and reproductive organs under normal growth conditions, whereas the PMI2 protein was not expressed in any organs under light. The induction of PMI1 expression and an increase in the AsA level were observed in leaves under continuous light, whereas the induction of PMI2 expression and a decrease in the AsA level were observed under long term darkness. PMI1 showed a diurnal expression pattern in parallel with the total PMI activity and the total AsA content in leaves. Moreover, a reduction of PMI1 expression through RNA interference resulted in a substantial decrease in the total AsA content of leaves of knockdown PMI1 plants, whereas the complete inhibition of PMI2 expression did not affect the total AsA levels in leaves of knock-out PMI2 plants. Consequently, this study improves our understanding of the molecular and functional properties of Arabidopsis PMI isoenzymes and provides genetic evidence of the involvement of PMI1, but not PMI2, in the biosynthesis of AsA in Arabidopsis plants.  相似文献   

18.
Recombinant interferon-gamma with a starting dose of 0.5 mg 3x/week subcutaneously, was administered to 6 patients with essential thrombocythemia (median platelet count 1172 X 10(9)/l, range 602-1564). Four of the patients had received alkylating agents previously. Hematological remission, defined as a decrease in platelet counts to less than or equal to 350 X 10(9)/l, was observed in none of these patients. Subsequently 4 of these 6 patients, supplemented by 2 others were treated with interferon-alpha 2c at a dose of 5 X 10(6) U daily subcutaneously. Five patients showed hematological remission. In case of hematological remission the interferon-alpha doses was reduced to 5 X an thereafter to 3 X weekly 5 X 10(6) U. During an observation period ranging from 12-41 weeks platelet counts remained normal in all patients. Side-effects were mild and consisted of fever, myalgias, malaise and itching occurring mainly during the first month of treatment. No dose adaptation was required. The patients treated previously with interferon-gamma experienced the side effects from this drug less tolerably than those from the alpha-compound. These observations suggest that recombinant interferon-alpha may be an effective drug in treating essential thrombocythemia resulting in a sustained response.  相似文献   

19.
Concanavalin A (ConA), one of the most studied plant lectins, is formed in jack bean (Canavalia ensiformis) seeds. ConA is synthesized as an inactive glycoprotein precursor proConA. Different processing events such as endoproteolytic cleavages, ligation of peptides and deglycosylation of the precursor are required to generate the different polypeptides constitutive of mature ConA. Among these events, deglycosylation of the prolectin appears as a key step in the lectin activation. The detection of deglycosylated proConA in immature jack bean seeds indicates that endoproteolytic cleavages are not prerequisite for its deglycosylation. Both the structure of the lectin precursor N-glycans Man8-9GlcNAc2 and the capacity of Endo H to cleave these oligosaccharide from native proConA in vitro favoured Endo H-type glycosidases as candidates for proConA deglycosylation in planta. Evidence for pH-dependent changes in the prolectin folding were obtained from analysis of the N-glycan accessibility and activation of the deglycosylated lectin precursor in acidic conditions. These data are consistent with the observation that both deglycosylation and acidification of the pH are the minimum requirements to convert the inactive precursor into an active lectin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号