首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substantial evidence indicates that amino acid conjugates of indole-3-acetic acid (IAA) function in auxin homeostasis, yet the plant enzymes involved in their biosynthesis have not been identified. We tested whether several Arabidopsis thaliana enzymes that are related to the auxin-induced soybean (Glycine max) GH3 gene product synthesize IAA-amino acid conjugates. In vitro reactions with six recombinant GH3 enzymes produced IAA conjugates with several amino acids, based on thin layer chromatography. The identity of the Ala, Asp, Phe, and Trp conjugates was verified by gas chromatography-mass spectrometry. Insertional mutations in GH3.1, GH3.2, GH3.5, and GH3.17 resulted in modestly increased sensitivity to IAA in seedling root. Overexpression of GH3.6 in the activation-tagged mutant dfl1-D did not significantly alter IAA level but resulted in 3.2- and 4.5-fold more IAA-Asp than in wild-type seedlings and mature leaves, respectively. In addition to IAA, dfl1-D was less sensitive to indole-3-butyric acid and naphthaleneacetic acid, consistent with the fact that GH3.6 was active on each of these auxins. By contrast, GH3.6 and the other five enzymes tested were inactive on halogenated auxins, and dfl1-D was not resistant to these. This evidence establishes that several GH3 genes encode IAA-amido synthetases, which help to maintain auxin homeostasis by conjugating excess IAA to amino acids.  相似文献   

2.
3.
4.
The formation of auxin conjugates is one of the important regulatory mechanisms for modulating IAA action. Several auxin-responsive GH3 genes encode IAA-amide synthetases that are involved in the maintenance of hormonal homeostasis by conjugating excess IAA to amino acids. Recently, the data have revealed novel regulatory functions of several GH3 proteins in plant growth, organ development, fruit ripening, light signaling, abiotic stress tolerance and plant defense responses. Indole-3-acetyl-aspartate (IAA-Asp) synthetase catalyzing IAA conjugation to aspartic acid in immature seeds of pea (Pisum sativum L.) was purified and characterized during our previous investigations. In this study, we examined the effect of auxin and other plant hormones (ABA, GA, kinetin, JA, MeJA, SA), different light conditions (red, far-red, blue, white light), and auxinic herbicides (2,4-D, Dicamba, Picloram) on the expression of a putative GH3 gene and IAA-amide synthesizing activity in 10-d-old pea seedlings. Quantitative RT-PCR analysis indicated that the PsGH3-5 gene, weakly expressed in control sample, was visibly induced in response to all plant hormones, different light wavelengths and the auxinic herbicides tested. Protein A immunoprecipitation/gel blot analysis using anti-AtGH3.5 antibodies revealed a similar pattern of changes on the protein levels in response to all treatments. IAA-amide synthetase activity determined with aspartate as a substrate, not detectable in control seedlings, was positively affected by a majority of treatments. Based on these results, we suggest that PsGH3-5 may control the growth and development of pea plants in a way similar to the known GH3 genes from other plant species.  相似文献   

5.
Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes.  相似文献   

6.
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg2+ or Mn2+ for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4–9-fold reductions in kcat/Km relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.  相似文献   

7.
8.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

9.
Sugar regulates a variety of genes and controls plant growth and development similarly to phytohormones. As part of a screen for Arabidopsis mutants with defects in sugar-responsive gene expression, we identified a loss-of-function mutation in the HOOKLESS1 (HLS1) gene. HLS1 was originally identified to regulate apical hook formation of dark-grown seedlings (Lehman et al., 1996, Cell 85: 183-194). In hls1, sugar-induced gene expression in excised leaf petioles was more sensitive to exogenous sucrose than that in the wild type. Exogenous IAA partially repressed sugar-induced gene expression and concomitantly activated some auxin response genes such as AUR3 encoding GH3-like protein. The repression and the induction of gene expression by auxin were attenuated and enhanced, respectively, by the hls1 mutation. These results suggest that HLS1 plays a negative role in sugar and auxin signaling. Because AUR3 GH3-like protein conjugates free IAA to amino acids (Staswick et al., 2002, Plant Cell 14: 1405-1415; Staswick et al., 2005, Plant Cell 17: 616-627), enhanced expression of GH3-like genes would result in a decrease in the free IAA level. Indeed, hls1 leaves accumulated a reduced level of free IAA, suggesting that HLS1 may be involved in negative feedback regulation of IAA homeostasis through the control of GH3-like genes. We discuss the possible mechanisms by which HLS1 is involved in auxin signaling for sugar- and auxin-responsive gene expression and in IAA homeostasis.  相似文献   

10.
Auxin is involved in different aspects of plant growth and development by regulating the expression of auxinresponsive family genes. As one of the three major auxinresponsive families, GH3(Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid(IAA) to amino acids.However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown.Here, the latest updated maize(Zea mays L.) reference genome sequence was used to characterize and analyze the Zm GH3 family genes from maize. The results showed that 13 Zm GH3 genes were mapped on fi ve maize chromosomes(total10 chromosomes). Highly diversi fi ed gene structures and tissue-speci fi c expression patterns suggested the possibility of function diversi fi cation for these genes in response to environmental stresses and hormone stimuli. The expression patterns of Zm GH3 genes are responsive to several abiotic stresses(salt, drought and cadmium) and major stress-relatedhormones(abscisic acid, salicylic acid and jasmonic acid)Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The respon siveness of Zm GH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that Zm GH3 s are involved in maize tolerance to environmental stresses.  相似文献   

11.
Ding X  Cao Y  Huang L  Zhao J  Xu C  Li X  Wang S 《The Plant cell》2008,20(1):228-240
New evidence suggests a role for the plant growth hormone auxin in pathogenesis and disease resistance. Bacterial infection induces the accumulation of indole-3-acetic acid (IAA), the major type of auxin, in rice (Oryza sativa). IAA induces the expression of expansins, proteins that loosen the cell wall. Loosening the cell wall is key for plant growth but may also make the plant vulnerable to biotic intruders. Here, we report that rice GH3-8, an auxin-responsive gene functioning in auxin-dependent development, activates disease resistance in a salicylic acid signaling- and jasmonic acid signaling-independent pathway. GH3-8 encodes an IAA-amino synthetase that prevents free IAA accumulation. Overexpression of GH3-8 results in enhanced disease resistance to the rice pathogen Xanthomonas oryzae pv oryzae. This resistance is independent of jasmonic acid and salicylic acid signaling. Overexpression of GH3-8 also causes abnormal plant morphology and retarded growth and development. Both enhanced resistance and abnormal development may be caused by inhibition of the expression of expansins via suppressed auxin signaling.  相似文献   

12.
The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleuci...  相似文献   

13.
14.
Indole-3-acetic acid (IAA) amidosynthetases catalyzing the ATP-dependent conjugation of IAA and amino acids play an important role in the maintenance of auxin homeostasis in plant cells. A new amidosynthetase, indole-3-acetic acid:l-aspartic acid ligase (IAA-Asp synthetase) involved in IAA-amino acid biosynthesis, was isolated via a biochemical approach from immature seeds of the pea (Pisum sativum L). The enzyme was purified to homogeneity by a three-step procedure, involving PEG 6000 fractionation, DEAE-Sephacel anion-exchange chromatography, and preparative PAGE, and characterized as a 70-kDa monomeric protein by analytical gel filtration and SDS-PAGE. Rabbit antiserum against recombinant AtGH3.5 cross-reacted with the pea IAA-Asp synthetase, and a single immunoreactive polypeptide band was observed at 70 kDa. The purified enzyme had an apparent isoelectric point at pH 4.7, the highest activity at pH 8.2, preferred Mg2+ as a cofactor, and was strongly activated by reducing agents. Similar to known recombinant GH3 enzymes, an IAA-Asp synthetase from pea catalyzes the conjugation of phytohormone acyl substrates to amino acids. The enzyme had the highest synthesizing activity on IAA, followed by 1-NAA, SA, 2,4-D, and IBA, whereas activities on l-Trp, IPA, PAA, (±)JA, and 2-NAA were not significant or not detected. Of 14 amino acids tested, the enzyme had the highest activity on Asp and lower activity on Ala and Lys. Glutamate was found to be a very poor substrate and no conjugating activity was observed on the rest of the amino acids. Steady-state kinetic analysis indicated that IAA and aspartate were preferred substrates for the pea IAA-Asp synthetase. The enzyme exhibited both higher affinities for IAA and Asp (K m = 0.2 and 2.5 mM, respectively) and catalytic efficiencies (k cat/K m = 682,608.7 and 5080 s−1 M−1, respectively) compared with other auxins and amino acids examined. This study describes the first amidosynthetase isolated and purified from plant tissue and provides the foundation for future genetic approaches to explain the role of IAA-Asp in Pisum sativum physiology.  相似文献   

15.
16.
Auxin is an indispensable hormone throughout the lifetime of nearly all plant species. Several aspects of plant growth and development are rigidly governed by auxin, from micro to macro hierarchies; auxin also has a close relationship with plant-pathogen interactions. Undoubtedly, precise auxin levels are vitally important to plants, which have many effective mechanisms to maintain auxin homeostasis. One mechanism is conjugating amino acid to excessive indole-3-acetic acid (IAA; main form of auxin) through some GH3 family proteins to inactivate it. Our previous study demonstrated that GH3-2 mediated broad-spectrum resistance in rice (Oryza sativa L.) by suppressing pathogen-induced IAA accumulation and downregulating auxin signaling. Here, we further investigated the expression pattern of GH3-2 and other GH3 family paralogs in the life cycle of rice and presented the possible function of GH3-2 on rice root development by histochemical analysis of GH3-2 promoter:GUS reporter transgenic plants.Key words: auxin, GH3 gene, indole-3-acetic acid, Oryza sativa, rootThe phytohormone auxin regulates tropism and organ development and influences phyllotaxis, vascular canalization and root patterning by exerting its effect on cell division, elongation and differentiation in plants.1,2 Indole-3-acetic acid (IAA) is the most widespread form of auxin in most plants. Supraoptimal or insufficient concentration of auxin will cause plants to exhibit abnormal phenotypes. 3-9 Auxin homeostasis is partly sustained by the GH3 gene family, a supervisor of the fluctuation of auxin. Most GH3 genes contain auxin-responsive cis-acting elements (AuxRE) in their promoter regions and react rapidly and transiently to auxin signaling.1 Nineteen GH3 paralogs have been discovered in Arabidopsis.10 According to the phylogenetic relationship and acyl acid substrate preference, these genes are classified into three groups (I, II and III), which catalyze the formation of jasmonates, salicylic acid, 4-substituted benzoates or IAA acyl acid amido conjugates.11,12 The rice GH3 gene family includes 13 paralogs, 4 belonging to group I (GH3-3, -5, -6 and -12) and 9 to group II (GH3-1, -2, -4, -7, -8, -9, -10, -11 and -13); group III GH3 is absent in rice.10 Rice GH3-1, -2, -8 and -13 paralogs have been biochemically confirmed to have IAA-amido synthetase activity by in vivo or in vitro assays.69 It is believed that other GH3 group II paralogs in rice may also possess this enzymatic activity. But why does rice have such a functionally redundant group of GH3 proteins, which disobeys the economic principle? The explanation could be based on the different temporal and spatial expression of the genes encoding these proteins.  相似文献   

17.
18.
For proper development of plants auxin levels need to be tightly controlled. For this, several routes have evolved and it is plausible that different organisms use these differently. To determine whether members of the family of GH3 proteins, which partially act as auxin conjugate synthetases in Arabidopsis thaliana, have similar roles in the moss Physcomitrella patens, we have investigated the in vitro activity of the two GH3 members in moss. We showed that both proteins can form amino acid conjugates with indole-3-acetic acid (IAA) but also with jasmonic acid (JA). Confirming these findings, single and double knockout-mutants showed lower levels of IAA conjugates than wild type. We discuss the results in light of the possible functions of IAA conjugate formation in lower land plants.Key words: Arabidopsis thaliana, auxin metabolism, jasmonic acid, GH3 genes, moss, Physcomitrella patensAuxins play diverse roles in many aspects of plant growth and development. Their activity is relying on the correct concentration in a given tissue and developmental stage.1 If higher levels of indole-3-acetic acid (IAA) are present, the hormone can also have an inhibitory effect on growth processes.2 Therefore, the tight control of IAA concentrations is absolutely necessary. To this end plants have evolved different mechanisms.3 First, biosynthesis is contributing to increasing IAA concentrations, mostly in young tissues such as meristems. Second, IAA can be transported in a polar way, depending on transport molecules, from cell to cell, away from the site of synthesis, thereby forming an auxin gradient along the plant axis. Third, IAA can be degraded, and fourth, IAA can be reversibly inactivated by conjugation to small molecules such as amino acids or sugars, but also be linked to larger molecules such as peptides or proteins.4 The inactive IAA conjugates can be hydrolyzed to yield free (i.e., active) IAA if needed. In higher plants the levels of free IAA constitutes between 5 and 20% depending on the tissue or age of the plant, whereas the conjugated form constitutes the major part.4 However, it is not yet clear in which way auxin homeostasis has evolved. The hypothesis that auxin has to be present during the evolution of a body plan has been tested by using different lower land plants which were compared in their mechanism to control auxin homeostasis. In algae, e.g., charophytes, the major metabolic way of controlling IAA is via biosynthesis. In bryophytes, the formation of IAA conjugates has been shown, although the amount was lower than for example in seed plants such as Arabidopsis thaliana.5,6 Since the molecular biology of auxin homeostasis in Arabidopsis is most advanced, we will use this model plant to compare the knowledge on seed plants with that in the moss Physcomitrella patens. The recent publication of the Physcomitrella genome7 gives the possibility to investigate components of the machinery controlling IAA levels in a lower land plant.In general, there seem to be high levels of redundancy involved in the pathways leading to decrease or increase of IAA, respectively. In Figure 1 we compare the current knowledge about genes related to IAA concentrations in Physcomitrella with Arabidopsis. While in Arabidopsis many different biosynthetic routes leading to IAA were identified,8 in the Physcomitrella genome homologs of the YUCCA genes have been detected.7 The presence of auxin conjugate synthetases has been experimentally verified in the moss (see below) and additional evidence for ester conjugate synthesis comes from sequence homology to UDP-glucosyl transferases.7 There is also the possibility of degradation of either IAA or an amino acid conjugate with IAA9,10 as discussed below.Open in a separate windowFigure 1Comparison of possibilities to regulate auxin homeostasis in Physcomitrella (solid lines) and Arabidopsis (dotted lines). Biosynthesis—AO, aldehyde oxidase; AMI1, amidase; CYP, cytochrome P450; NIT, nitrilase; TAA1, tryptophan aminotransferase; YUCCA, flavin monooxygenase; transport—AUX/LAX, auxin influx facilitator family; PIN, auxin efflux carrier family; PGP, ABC transporter type auxin efflux carrier family; conjugation/hydrolysis—UGT, UDP-glucosyl transferase; GH3, auxin conjugate synthetase family; ILR/IAR, auxin conjugate hydrolase family; Ox-IAA, oxindole-3-acetic acid; Ox-IAAsp, oxindole-3-aspartic acid.So far our work has focussed on the characterization of two members of the so called GH3 family, of which several from Arabidopsis can form conjugates of IAA with a variety of amino acids.11 While 19 members of this family have been described in Arabidopsis, only two are present in Physcomitrella.12 The Arabidopsis family clusters in three groups: group I containing the jasmonic acid conjugate synthetase JAR1 and a few others with as yet unkown function, group II the auxin conjugate synthetases, and group III with mostly as yet uncharacterized members.11,13 Sequence similarity of the GH3 genes from Physcomitrella showed that both cluster within the JAR1 group.12 Therefore, we analyzed the enzymatic activity of the two Physcomitrella GH3 proteins (PpGH3-1 and PpGH3-2) in vitro14 and found that both were active on jasmonic acid and a variety of different amino acids, whereas PpGH3-2 was active mostly with IAA. PpGH3-1 showed only weak activity with IAA and only two amino acids. For this reason, it could be assumed that the two Physcomitrella genes evolved by gene duplication, from which the initial activities would be for IAA and jasmonic acid. One of these genes might have evolved into a jasmonate conjugate synthetase (maybe AtJAR1),13 thereby loosing its activity on IAA. The second may have given rise to the auxin conjugate synthetase family in Arabidopsis,11 but the conjugate synthetases of Physcomitrella have still activity with both hormones. Interestingly, there is no evidence as yet that jasmonic acid itself has a role during Physcomitrella development, although a possible function of JA-conjugates has not been closely investigated. Since in Arabidopsis the JA conjugate with isoleucine is the active compound to be recognized by the COI1 receptor protein,15 it could be the case that JA itself has no effect in Physcomitrella. However, in our growth experiments a small growth promoting effect of JA, independently on the presence of GH3 genes was found. Similar observations were made with gibberellins in Physcomitrella.16Further characterization of single and double KO mutants in each of the PpGH3 genes has led to the hypothesis that GH3 proteins are indeed involved in regulating the auxin homeostasis in Physcomitrella.14 Both single KO mutants were more sensitive to increasing IAA concentrations in the medium than the wild type. Furthermore, the levels of free IAA were higher and the levels of conjugated IAA concomitantly dropped. A double KO mutant had almost no IAA conjugates when compared to the wild type. However, this mutant was still able to synthesize ester conjugates with IAA. Interestingly, the role of GH3 proteins in auxin conjugation seemed to be only important in the gametophore stage, whereas protonema cultures of GH3 KO mutants did not show any changes in auxin homeostasis. Therefore, we hypothesize that the role of GH3 proteins is dependent on a certain developmental stage of the moss. Additionally, we propose other detoxification mechanisms for example, export or degradation, in protonema.In higher plants the ester conjugate formation of IAA has been shown to be dependent on UDP-glucosyl transferases (AtUGT84B1 for Arabidopsis17 and ZmIAGLU for maize18). In the genome of Physcomitrella we could detect candidate sequence(s) for these genes, indicating that Physcomitrella has indeed the potential to synthesise the ester conjugates found in the gametophores in addition to amide conjugates. However, in the Physcomitrella genome, no homolog for an auxin conjugate hydrolase was found. In higher plants, auxin conjugate hydrolysis is thought to contribute to free IAA and depending on the plant species, large gene families with overlapping but distinct substrate preferences for individual amino acid conjugates with IAA are present.19,20 Since this is not the case for Physcomitrella, one has to ask the question whether the conjugation of auxin is a one-way road for inactivation of excess auxin and whether auxin conjugate hydrolysis has evolved later during plant evolution.In the Selaginella moellendorffii genome (http://genome.jgi-psf.org/Selmo1/Selmo1.home.html), an auxin conjugate hydrolase sequence related to higher plant ones, has been found based on homology searches, but the completion of the genome has to be awaited to draw final conclusions. Likewise, it is not clear, if this effect is specific for Physcomitrella, or found in bryophytes in general. Therefore, additional sequenced bryophyte genomes are needed.21Since in Arabidopsis the degradation of the IAA-Aspartate conjugate to Ox-IAA-Asp (see Fig. 1) has been described,9,10 a similar scenario could be suggested to occur in Physcomitrella with the amino acid conjugates formed. Alternatively, the hydrolysis of IAA conjugates by members of the M20 dipeptidase family can be envisioned. However, this would need the activity of enzymes with very low sequence conservation to auxin conjugate hydrolases. These questions will be addressed in future research by studying the metabolism of IAA and IAA conjugates of Physcomitrella in more detail.  相似文献   

19.
为了研究葡萄早期应答生长素基因SAUR(Small auxin-up RNA)家族,本研究利用全基因组信息鉴定了葡萄64个SAUR家族成员,并对SAUR家族成员的基因结构、氨基酸特性、染色体定位、基因进化、基因功能以及组织表达进行分析。结果表明,葡萄全基因组上64个SAUR家族成员在19条染色体中的8条染色体上呈现簇状分布,主要分布在3、4号染色体上,其中3号染色体上数量最多为37个;葡萄SAUR家族基因长度较短,有59个基因是无内含子基因;蛋白理化特征分析显示,多数SAUR蛋白呈碱性,结构稳定性较差,蛋白脂溶指数高,呈亲水性;基因功能预测结果表明,葡萄SAUR基因主要担当生长因子、结构蛋白、转录、转录调控以及响应胁迫应答和免疫应答6种功能,其中更多参与生长调节功能;根据系统进化分析将其分为10个分支,另外不同组织表达谱的分析结果表明SAUR基因家族成员具有不同的组织表达模式,对于非生物胁迫具有一定的调节作用。这些信息为葡萄SAUR基因家族功能分析奠定了一定的工作基础。  相似文献   

20.
With the aim of investigating the mechanisms that maintain auxin homeostasis in plants, we have monitored the net uptake and metabolism of exogenously supplied indole-3-acetic acid (IAA) and naphthalene-1-acetic acid (NAA) in seedlings of wild type and the IAA-overproducing mutant sur1 of Arabidopsis thaliana . Tritiated IAA and NAA entered the seedling tissues within minutes and were mostly accumulated as metabolites, probably amino acid and sugar conjugates. The mutant seedlings were marked by a strong increase of [3H]IAA metabolism and a reduction of the accumulation levels of both free [3H]IAA and [3H]NAA. The same characteristics were observed in wild-type seedlings grown on 5 μ M picloram. We measured [3H]NAA uptake in the presence of high concentrations of unlabeled NAA or the auxin efflux carrier inhibitor naphthylphthalamic acid (NPA). This abolished the difference in free [3H]NAA accumulation between the mutant or picloram-treated seedlings and wild-type seedlings. These data indicated that active auxin efflux carriers were present in Arabidopsis seedling tissues. Picloram-treated seedlings and seedlings of the IAA-overproducing mutant sur1 displayed increased auxin efflux carrier activity as well as elevated conjugation of IAA. There is previous evidence to suggest that conjugation is a means to remove excess IAA in plant cells. Here, we discuss the possibility of efflux constituting an additional mechanism for regulating free IAA levels in the face of an excess auxin supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号