首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
Life at the dry edge: Microorganisms of the Atacama Desert   总被引:1,自引:0,他引:1  
The Atacama Desert, located in northern Chile, is the driest and oldest Desert on Earth. Research aimed at the understanding of this unique habitat and its diverse microbial ecosystems begun only a few decades ago, mainly driven by NASA's astrobiology program. A milestone in these efforts was a paper published in 2003, when the Atacama was shown to be a proper model of Mars. From then on, studies have been focused to examine every possible niche suitable for microbial life in this extreme environment. Habitats as different as the underside of quartz rocks, fumaroles at the Andes Mountains, the inside of halite evaporates and caves of the Coastal Range, among others, have shown that life has found ingenious ways to adapt to extreme conditions such as low water availability, high salt concentration and intense UV radiation.  相似文献   

2.
Our knowledge on the Microbiology of the Atacama Desert has increased steadily and substantially during the last two decades. This information now supports a paradigmatic change on the Atacama Desert from a sterile, uninhabitable territory to a hyperarid region colonized by a rich microbiota that includes extremophiles and extreme-tolerant microorganisms. Also, extensive reports are available on the prevalent physical and chemical environmental conditions, ecological niches and, the abundance, diversity and organization of the microbial life in the Atacama Desert. This territory is a highly desiccated environment due to the absence of regular rain events. Liquid water scarcity is the most serious environmental factor affecting the Atacama Desert microorganisms. The intense solar irradiation in this region contributes, in a synergistic fashion with desiccation, to limit the survival and growth of the microbial life. In order to overcome these two extreme conditions, successful microorganisms, organized as microbial consortia, take advantage of (a) the physical characteristics of lithic habitats, which provide sites for colonization on, within or below the rock substrate, the attenuation and filtration of the intense solar irradiation and, the collection of liquid water from incoming fog formations and by water vapour condensation and deliquescence on or within their surfaces, and (b) the biological adaptations of members of the microbial communities that allow them to synthesize hydrophilic macromolecules, antioxidants and UV-light absorbents. Lithic habitats have been considered specialized shelters where life forms can reach protection at environments subjected to extremes of desiccation and solar irradiation, here on Earth or elsewhere. This review is an overview of part of the scientific information collected on lithobionts from the Atacama Desert, their rock substrates and their strategies to cope with extremes of desiccation and intense photosynthetic active radiation and UV irradiations.  相似文献   

3.
Martian surface microbial inhabitants would be challenged by a constant and unimpeded flux of UV radiation, and the study of analog model terrestrial environments may be of help to understand how such life forms could survive under this stressful condition. One of these environments is the Atacama Desert (Chile), a well-known Mars analog due to its extreme dryness and intense solar UV radiation. Here, we report the microbial diversity at five locations across this desert and the isolation of UVC-tolerant microbial strains found in these sites. Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA sequences obtained from these sites showed banding patterns that suggest distinct and complex microbial communities. Analysis of 16S rDNA sequences obtained from UV-tolerant strains isolated from these sites revealed species related to the Bacillus and Pseudomonas genera. Vegetative cells of one of these isolates, Bacillus S3.300-2, showed the highest UV tolerance profile (LD10?=?318 J?m2), tenfold higher than a wild-type strain of Escherichia coli. Thus, our results show that the Atacama Desert harbors a noteworthy microbial community that may be considered for future astrobiological-related research in terms of UV tolerance.  相似文献   

4.
The Atacama Desert, one of the driest deserts in the world, represents a unique extreme environmental ecosystem to explore the bacterial diversity as it is considered to be at the dry limit for life. A 16S rRNA gene (spanning the hyper variable V3 region) library was constructed from an alkaline sample of unvegetated soil at the hyperarid margin in the Atacama Desert. A total of 244 clone sequences were used for MOTHUR analysis, which revealed 20 unique phylotypes or operational taxonomic units (OTUs). V3 region amplicons of the 16S rRNA were suitable for distinguishing the bacterial community to the genus and specie level. We found that all OTUs were affiliated with taxa representative of the Firmicutes phylum. The extremely high abundance of Firmicutes indicated that most bacteria in the soil were spore-forming survivors. In this study we detected a narrower diversity as compared to other ecological studies performed in other areas of the Atacama Desert. The reported genera were Oceanobacillus (representing the 69.5 % of the clones sequenced), Bacillus, Thalassobacillus and Virgibacillus. The present work shows physical and chemical parameters have a prominent impact on the microbial community structure. It constitutes an example of the communities adapted to live in extreme conditions caused by dryness and metal concentrations .

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0539-3) contains supplementary material, which is available to authorized users.  相似文献   

5.
Interests in the Atacama Desert of northern Chile until very recently were founded on its mineral resources, notably nitrate, copper, lithium and boron. Now this vast desert, the oldest and most arid on Earth, is revealing a microbial diversity that was unimagined even a decade or so ago; indeed the extreme hyper-arid core of the Desert was considered previously to be completely devoid of life. In this Perspective article we highlight pioneering research that, to the contrary, establishes the Atacama as a combination of rich microbial habitats including bacteria that influence biogeochemical transformations in the desert and others that are propitious sources of novel natural products. Many of the Atacama’s habitats are especially rich in actinobacteria, not necessarily as dense populations but extensive in taxonomic diversity and capacities to synthesize novel secondary metabolites. Among the latter, compounds have been characterized that express a range of antibiotic, anti-cancer and anti- inflammatory properties to which a variety of bioinformatics and metabolic engineering tools are being applied in order to enhance potencies and productivities. Unquestionably the Atacama Desert is a living desert with regard to which future microbiology and biotechnology research presents exciting opportunities.  相似文献   

6.
Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70 degrees S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the desert clustered separately from all of the remaining communities. Bands sequenced from DGGE profiles of two samples taken at a 22-month interval from this core region revealed the presence of similar populations dominated by bacteria from the Gemmatimonadetes and Planctomycetes phyla.  相似文献   

7.
The Atacama Desert of northern Chile is considered one of the most arid and extreme environment on Earth. Its core region was described as featuring “Mars-like” soils that were at one point deemed too extreme for life to exist. However, recent investigations confirmed the presence of diverse culturable actinobacteria. In the current review, we discuss a total of 46 natural products isolated to date representing diverse chemical classes characterized from different actinobacteria isolated from various locations in the Atacama Desert. Their reported biological activities are also discussed.  相似文献   

8.
Soils from the hyperarid Atacama Desert of northern Chile were sampled along an east-west elevational transect (23.75 to 24.70°S) through the driest sector to compare the relative structure of bacterial communities. Analysis of denaturing gradient gel electrophoresis (DGGE) profiles from each of the samples revealed that microbial communities from the extreme hyperarid core of the desert clustered separately from all of the remaining communities. Bands sequenced from DGGE profiles of two samples taken at a 22-month interval from this core region revealed the presence of similar populations dominated by bacteria from the Gemmatimonadetes and Planctomycetes phyla.  相似文献   

9.
Endolithic (rock-dwelling) microbial communities are ubiquitous in hyper-arid deserts around the world and the last resort for life under extreme aridity. These communities are excellent models to explore biotic and abiotic drivers of diversity because they are of low complexity. Using high-throughput amplicon and metagenome sequencing, combined with X-ray computed tomography, we investigated how water availability and substrate architecture modulated the taxonomic and functional composition of gypsum endolithic communities in the Atacama Desert, Chile. We found that communities inhabiting gypsum rocks with a more fragmented substrate architecture had higher taxonomic and functional diversity, despite having less water available. This effect was tightly linked with community connectedness and likely the result of niche differentiation. Gypsum communities were functionally similar, yet adapted to their unique micro-habitats by modulating their carbon and energy acquisition strategies and their growth modalities. Reconstructed population genomes showed that these endolithic microbial populations encoded potential pathways for anoxygenic phototrophy and atmospheric hydrogen oxidation as supplemental energy sources.  相似文献   

10.
The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO3?, are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.  相似文献   

11.
The geological, hydrological and microbiological features of the Salar de Atacama, the most extensive evaporitic sedimentary basin in the Atacama Desert of northern Chile, have been extensively studied. In contrast, relatively little attention has been paid to the composition and roles of microbial communities in hypersaline lakes which are a unique feature in the Salar. In the present study biochemical, chemical and molecular biological tools were used to determine the composition and roles of microbial communities in water, microbial mats and sediments along a marked salinity gradient in Laguna Puilar which is located in the “Los Flamencos” National Reserve. The bacterial communities at the sampling sites were dominated by members of the phyla Bacteroidetes, Chloroflexi, Cyanobacteria and Proteobacteria. Stable isotope and fatty acid analyses revealed marked variability in the composition of microbial mats at different sampling sites both horizontally (at different sites) and vertically (in the different layers). The Laguna Puilar was shown to be a microbially dominated ecosystem in which more than 60% of the fatty acids at particular sites are of bacterial origin. Our pioneering studies also suggest that the energy budgets of avian consumers (three flamingo species) and dominant invertebrates (amphipods and gastropods) use minerals as a source of energy and nutrients. Overall, the results of this study support the view that the Salar de Atacama is a heterogeneous and fragile ecosystem where small changes in environmental conditions may alter the balance of microbial communities with possible consequences at different trophic levels.  相似文献   

12.
Quartz stones are ubiquitous in deserts and are a substrate for hypoliths, microbial colonists of the underside of such stones. These hypoliths thrive where extreme temperature and moisture stress limit the occurrence of higher plant and animal life. Several studies have reported the occurrence of green hypolithic colonization dominated by cyanobacteria. Here, we describe a novel red hypolithic colonization from Yungay, at the hyper-arid core of the Atacama Desert in Chile. Comparative analysis of green and red hypoliths from this site revealed markedly different microbial community structure as revealed by 16S rRNA gene clone libraries. Green hypoliths were dominated by cyanobacteria (Chroococcidiopsis and Nostocales phylotypes), whilst the red hypolith was dominated by a taxonomically diverse group of chloroflexi. Heterotrophic phylotypes common to all hypoliths were affiliated largely to desiccation-tolerant taxa within the Actinobacteria and Deinococci. Alphaproteobacterial phylotypes that affiliated with nitrogen-fixing taxa were unique to green hypoliths, whilst Gemmatimonadetes phylotypes occurred only on red hypolithon. Other heterotrophic phyla recovered with very low frequency were assumed to represent functionally relatively unimportant taxa.  相似文献   

13.
14.
The Atacama Desert is the driest non‐polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet–dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit‐sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio‐weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit–crust. We conclude that this type of CGC can be expected in all non‐polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.  相似文献   

15.
The hyperarid core of the Atacama Desert represents one of the driest places on Earth with an exceptional occurrence of microbial life coping with extreme environmental stress factors. The gypsum crusts have already been found to harbor diverse communities in this area. Here, we present a Raman spectroscopic study, complemented by correlative microscopic imaging using SEM-BSE and fluorescence microscopy, of the endolithic microbial communities inside the Ca-sulphate crusts dominated by phototrophic microorganisms. Differences of pigment composition within different zones follow the cyanobacterial and algal colonization and also reveal the degradation of phycobiliproteins within the decayed biomass of cyanobacteria. Carotenoids of at least three different types were recognized, differing in dependence on the particular phylum of phototrophic microorganisms. Moreover, calcium oxalate monohydrate – whewellite – was found to be associated with the algae and hyphal associations living in the lower regions of the crust. The 785 nm excitation wavelength employed here was found to be the correct source for studying pigment composition as well as for the detection of the oxalate. A comparison of these results with those using 514.5 nm laser excitation which is widely adopted for the detection of carotenoids due to the resonance Raman effect is made and discussed.  相似文献   

16.
In hyperarid deserts, endolithic microbial communities colonize the rocks’ interior as a survival strategy. Yet, the composition of these communities and the drivers promoting their assembly are still poorly understood. We analysed the diversity and community composition of endoliths from four different lithic substrates – calcite, gypsum, ignimbrite and granite – collected in the hyperarid zone of the Atacama Desert, Chile. By combining microscopy, mineralogy, spectroscopy and high throughput sequencing, we found these communities to be highly specific to their lithic substrate, although they were all dominated by the same four main phyla, Cyanobacteria, Actinobacteria, Chloroflexi and Proteobacteria. Our finding indicates a fine scale diversification of the microbial reservoir driven by substrate properties. The data suggest that the overall rock chemistry and the light transmission properties of the substrates are not essential drivers of community structure and composition. Instead, we propose that the architecture of the rock, i.e., the space available for colonization and its physical structure, linked to water retention capabilities, is ultimately the driver of community diversity and composition at the dry limit of life.  相似文献   

17.
This brief introduction is intended to orientate the reader with respect to the principal environmental and historical features of the Atacama Desert, the oldest and continuously driest non-polar temperate desert on Earth. Exploration of its microbiology is relatively recent but both fundamental and applied research activities have grown dramatically in recent years reflecting the substantial interest in its microbial diversity, ecology, biogeochemistry, natural product potential and Mars-analogue properties of this unique and invigorating environment.  相似文献   

18.
Microalgae are an important source of unsaturated fatty acids, phospholipids, glycolipids, and carotenes, which are useful compounds for the food and pharmaceutical industries. The Atacama Desert of northern Chile is one of the driest deserts on Earth and, as such, it is a great natural laboratory in which to study new microorganisms adapted to extreme environments. A microalgal strain, referred to here as CH03, was isolated from a microbial mat in salt flat water in Salar de Atacama. Genetic analysis of the 18S ribosomal RNA gene showed that the strain had homology with other known sequences of the species Chlorella sorokiniana. Our results revealed the adaptability of this microalga to freshwater medium under laboratory conditions, despite coming from an extremely high‐salinity environment. The fatty acid profile of CH03(A) newly isolated in Bold's basal medium differed from that of CH03(B) cultured in vitro in modified F/2 medium and from another five strains of C. sorokiniana and three strains of Chlorella vulgaris in that it had a high stearic acid content and had no polyunsaturated fatty acids. The major biochemical components observed in this strain were proteins (64.3–73.6%) and lipids (26.6–32.6%). This study suggests that the strain CH03 could be a protein source and that this oleaginous microalga is easy to grow in vitro as a biological model for future studies.  相似文献   

19.
In the Atacama Desert, cyanobacteria grow on various substrates such as soils (edaphic) and quartz or granitoid stones (lithic). Both edaphic and lithic cyanobacterial communities have been described but no comparison between both communities of the same locality has yet been undertaken. In the present study, we compared both cyanobacterial communities along a precipitation gradient ranging from the arid National Park Pan de Azúcar (PA), which resembles a large fog oasis in the Atacama Desert extending to the semiarid Santa Gracia Natural Reserve (SG) further south, as well as along a precipitation gradient within PA. Various microscopic techniques, as well as culturing and partial 16S rRNA sequencing, were applied to identify 21 cyanobacterial species; the diversity was found to decline as precipitation levels decreased. Additionally, under increasing xeric stress, lithic community species composition showed higher divergence from the surrounding edaphic community, resulting in indigenous hypolithic and chasmoendolithic cyanobacterial communities. We conclude that rain and fog water, respectively, cause contrasting trends regarding cyanobacterial species richness in the edaphic and lithic microhabitats.  相似文献   

20.
The scarcity of liquid water in the hyperarid core of the Atacama Desert makes this region one of the most challenging environments for life on Earth. The low numbers of microbial cells in the soils suggest that within the Atacama Desert lies the dry limit for life on our planet. Here, we show that the Ca‐sulfate crusts of this hyperarid core are the habitats of lithobiontic micro‐organisms. This microporous, translucent substrate is colonized by epilithic lichens, as well as endolithic free‐living algae, fungal hyphae, cyanobacteria and non photosynthetic bacteria. We also report a novel type of endolithic community, “hypoendoliths”, colonizing the undermost layer of the crusts. The colonization of gypsum crusts within the hyperarid core appears to be controlled by the moisture regime. Our data shows that the threshold for colonization is crossed within the dry core, with abundant colonization in gypsum crusts at one study site, while crusts at a drier site are virtually devoid of life. We show that the cumulative time in 1 year of relative humidity (RH) above 60% is the best parameter to explain the difference in colonization between both sites. This is supported by controlled humidity experiments, where we show that colonies of endolithic cyanobacteria in the Ca‐sulfate crust undergo imbibition process at RH >60%. Assuming that life once arose on Mars, it is conceivable that Martian micro‐organisms sought refuge in similar isolated evaporite microenvironments during their last struggle for life as their planet turned arid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号