共查询到20条相似文献,搜索用时 0 毫秒
1.
Fox CW Scheibly KL Reed DH 《Evolution; international journal of organic evolution》2008,62(9):2236-2249
The degree to which, and rapidity with which, inbreeding depression can be purged from a population has important implications for conservation biology, captive breeding practices, and invasive species biology. The degree and rate of purging also informs us regarding the genetic mechanisms underlying inbreeding depression. We examine the evolution of mean survival and inbreeding depression in survival following serial inbreeding in a seed-feeding beetle, Stator limbatus, which shows substantial inbreeding depression at all stages of development. We created two replicate serially inbred populations perpetuated by full-sib matings and paired with outbred controls. The genetic load for the probability that an egg produces an adult was purged at approximately 0.45-0.50 lethal equivalents/generation, a reduction of more than half after only three generations of sib-mating. After serial inbreeding we outcrossed all beetles then measured (1) larval survival of outcrossed beetles and (2) inbreeding depression. Survival of outcrossed beetles evolved to be higher in the serially inbred populations for all periods of development. Inbreeding depression and the genetic load were significantly lower in the serially inbred than control populations. Inbreeding depression affecting larval survival of S. limbatus is largely due to recessive deleterious alleles of large effect that can be rapidly purged from a population by serial sib-mating. However, the effectiveness of purging varied among the periods of egg/larval survival and likely varies among other unstudied fitness components. This study presents novel results showing rapid and extensive purging of the genetic load, specifically a reduction of as much as 72% in only three generations of sib-mating. However, the high rate of extinction of inbred lines, despite the lines being reared in a benign laboratory environment, indicates that intentional purging of the genetic load of captive endangered species will not be practical due to high rates of subpopulation extinction. 相似文献
2.
E. PORCHER J. K. KELLY P.‐O. CHEPTOU C. G. ECKERT M. O. JOHNSTON S. KALISZ 《Journal of evolutionary biology》2009,22(4):708-717
The magnitude of inbreeding depression, a central parameter in the evolution of plant mating systems, can vary depending on environmental conditions. However, the underlying genetic mechanisms causing environmental fluctuations in inbreeding depression, and the consequences of this variation for the evolution of self‐fertilization, have been little studied. Here, we consider temporal fluctuations of the selection coefficient in an explicit genetic model of inbreeding depression. We show that substantial variance in inbreeding depression can be generated at equilibrium by fluctuating selection, although the simulated variance tends to be lower than has been measured in experimental studies. Our simulations also reveal that purging of deleterious mutations does not depend on the variance in their selection coefficient. Finally, an evolutionary analysis shows that, in contrast to previous theoretical approaches, intermediate selfing rates are never evolutionarily stable when the variation in inbreeding depression is due to fluctuations in the selection coefficient on deleterious mutations. 相似文献
3.
Data on the effects of inbreeding on fitness components are reviewed in the light of population genetic models of the possible genetic causes of inbreeding depression. Deleterious mutations probably play a major role in causing inbreeding depression. Putting together the different kinds of quantitative genetic data, it is difficult to account for the very large effects of inbreeding on fitness in Drosophila and outcrossing plants without a significant contribution from variability maintained by selection. Overdominant effects of alleles on fitness components seem not to be important in most cases. Recessive or partially recessive deleterious effects of alleles, some maintained by mutation pressure and some by balancing selection, thus seem to be the most important source of inbreeding depression. Possible experimental approaches to resolving outstanding questions are discussed. 相似文献
4.
Background
Social interactions often occur among living organisms, including aquatic animals. There is empirical evidence showing that social interactions may genetically affect phenotypes of individuals and their group mates. In this context, the heritable effect of an individual on the phenotype of another individual is known as an Indirect Genetic Effect (IGE). Selection for socially affected traits may increase response to artificial selection, but also affect rate of inbreeding.Methods
A simulation study was conducted to examine the effect of Best Linear Unbiased Prediction (BLUP) selection for socially affected traits on the rate of inbreeding. A base scenario without IGE and three alternative scenarios with different magnitudes of IGE were simulated. In each generation, 25 sires and 50 dams were mated, producing eight progeny per dam. The population was selected for 20 generations using BLUP. Individuals were randomly assigned to groups of eight members in each generation, with two families per group, each contributing four individuals. “Heritabilities” (for both direct and indirect genetic effects) were equal to 0.1, 0.3 or 0.5, and direct–indirect genetic correlations were −0.8, −0.4, 0, 0.4, or 0.8. The rate of inbreeding was calculated from generation 10 to 20.Results
For the base scenario, the rates of inbreeding were 4.09, 2.80 and 1.95% for “heritabilities” of 0.1, 0.3 and 0.5, respectively. Overall, rates of inbreeding for the three scenarios with IGE ranged from 2.21 to 5.76% and were greater than for the base scenarios. The results show that social interaction within groups of two families increases the resemblance between estimated breeding values of relatives, which, in turn, increases the rate of inbreeding.Conclusion
BLUP selection for socially affected traits increased the rate of inbreeding. To maintain inbreeding at an acceptable rate, a selection algorithm that restricts the increase in mean kinship, such as optimum contribution selection, is required. 相似文献5.
Inbreeding depression is expected to play an important but complicated role in evolution. If we are to understand the evolution of inbreeding depression (i.e., purging), we need quantitative genetic interpretations of its variation. We introduce an experimental design in which sires are mated to multiple dams, some of which are unrelated to the sire but others are genetically related owing to an arbitrary number of prior generations of selfing or sib-mating. In this way we introduce the concept of "inbreeding depression effect variance," a parameter more relevant to selection and the purging of inbreeding depression than previous measures. We develop an approach for interpreting the genetic basis of the variation in inbreeding depression by: (1) predicting the variation in inbreeding depression given arbitrary initial genetic variance and (2) estimating genetic variance components given half-sib covariances estimated by our experimental design. As quantitative predictions of selection depend upon understanding genetic variation, our approach reveals the important difference between how inbreeding depression is measured experimentally and how it is viewed by selection. 相似文献
6.
Inferring the genetic basis of inbreeding depression in plants. 总被引:1,自引:0,他引:1
Recent progress in the genetic analysis of inbreeding depression in plants is reviewed. While the debate over the importance of genes of dominance versus overdominance effect continues, the scope of inferences has widened and now includes such facets as the interactions between genes, the relative abundance of major versus minor genes, life cycle stage expression, and mutation rates. The types of inferences are classified into the genomic, where many genes are characterized as an average, and the genic, where individual genes are characterized. Genomic inferences can be based upon natural levels of inbreeding depression, purging experiments, the comparison of individuals of differing F (e.g., prior inbreeding), and various crossing designs. Genic inferences mainly involve mapping and characterizing loci with genetic markers, involving either a single cross or, ideally, several crosses. Alternative statistical models for analyzing polymorphic loci causing inbreeding depression should be a fruitful problem for geneticists to pursue. Key words : inbreeding depression, genetic load, self-fertilization, QTL mapping. 相似文献
7.
An important question emerging from theoretical studies of mating system evolution is whether the fitness of a randomly extracted, fully inbred genotype will exceed the mean of outbred individuals. We introduce two statistics (I(1) and I(2)) related to the probability of extracting a high line. I(1) and I(2) can be estimated from the family structured experimental designs typically used to estimate inbreeding depression (ID). Maximum likelihood procedures are developed from an explicit genetic model. These yield parameter estimates and provide the likelihoods necessary to test hypotheses, for example, whether population-level ID is nonzero. Finally, we describe a new publicly available computer program titled 'IDG' (Inbreeding Depression Genetics) to execute these procedures. 相似文献
8.
Patterns of inbreeding depression and architecture of the load in subdivided populations 总被引:3,自引:0,他引:3
Inbreeding depression is a general phenomenon that is due mainly to recessive deleterious mutations, the so-called mutation load. It has been much studied theoretically. However, until very recently, population structure has not been taken into account, even though it can be an important factor in the evolution of populations. Population subdivision modifies the dynamics of deleterious mutations because the outcome of selection depends on processes both within populations (selection and drift) and between populations (migration). Here, we present a general model that permits us to gain insight into patterns of inbreeding depression, heterosis, and the load in subdivided populations. We show that they can be interpreted with reference to single-population theory, using an appropriate local effective population size that integrates the effects of drift, selection, and migration. We term this the "effective population size of selection" (NS(e)). For the infinite island model, for example, it is equal to NS(e) = N1 + m/hs, where N is the local population size, m the migration rate, and h and s the dominance and selection coefficients of deleterious mutation. Our results have implications for the estimation and interpretation of inbreeding depression in subdivided populations, especially regarding conservation issues. We also discuss the possible effects of migration and subdivision on the evolution of mating systems. 相似文献
9.
Effects of partial selfing on the equilibrium genetic variance,mutation load,and inbreeding depression under stabilizing selection 下载免费PDF全文
The mating system of a species is expected to have important effects on its genetic diversity. In this article, we explore the effects of partial selfing on the equilibrium genetic variance Vg, mutation load L, and inbreeding depression δ under stabilizing selection acting on a arbitrary number n of quantitative traits coded by biallelic loci with additive effects. When the ratio is low (where U is the total haploid mutation rate on selected traits) and effective recombination rates are sufficiently high, genetic associations between loci are negligible and the genetic variance, mutation load, and inbreeding depression are well predicted by approximations based on single‐locus models. For higher values of and/or lower effective recombination, moderate genetic associations generated by epistasis tend to increase Vg, L, and δ, this regime being well predicted by approximations including the effects of pairwise associations between loci. For yet higher values of and/or lower effective recombination, a different regime is reached under which the maintenance of coadapted gene complexes reduces Vg, L, and δ. Simulations indicate that the values of Vg, L, and δ are little affected by assumptions regarding the number of possible alleles per locus. 相似文献
10.
Whitlock MC 《Genetics》2002,160(3):1191-1202
The subdivision of a species into local populations causes its response to selection to change, even if selection is uniform across space. Population structure increases the frequency of homozygotes and therefore makes selection on homozygous effects more effective. However, population subdivision can increase the probability of competition among relatives, which may reduce the efficacy of selection. As a result, the response to selection can be either increased or decreased in a subdivided population relative to an undivided one, depending on the dominance coefficient F(ST) and whether selection is hard or soft. Realistic levels of population structure tend to reduce the mean frequency of deleterious alleles. The mutation load tends to be decreased in a subdivided population for recessive alleles, as does the expected inbreeding depression. The magnitude of the effects of population subdivision tends to be greatest in species with hard selection rather than soft selection. Population structure can play an important role in determining the mean fitness of populations at equilibrium between mutation and selection. 相似文献
11.
A threefold genetic allee effect: population size affects cross-compatibility, inbreeding depression and drift load in the self-incompatible Ranunculus reptans 下载免费PDF全文
A decline in population size can lead to the loss of allelic variation, increased inbreeding, and the accumulation of genetic load through drift. We estimated the fitness consequences of these processes in offspring of controlled within-population crosses from 13 populations of the self-incompatible, clonal plant Ranunculus reptans. We used allozyme allelic richness as a proxy for long-term population size, which was positively correlated with current population size. Crosses between plants of smaller populations were less likely to be compatible. Inbreeding load, assessed as the slope of the relationship between offspring performance and parental kinship coefficients, was not related to population size, suggesting that deleterious mutations had not been purged from small populations. Offspring from smaller populations were on average more inbred, so inbreeding depression in clonal fitness was higher in small populations. We estimated variation in drift load from the mean fitness of outbred offspring and found enhanced drift load affecting female fertility within small populations. We conclude that self-incompatibility systems do not necessarily prevent small populations from suffering from inbreeding depression and drift load and may exacerbate the challenge of finding suitable mates. 相似文献
12.
Carr DE Dudash MR 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2003,358(1434):1071-1084
Predictions for the evolution of mating systems and genetic load vary, depending on the genetic basis of inbreeding depression (dominance versus overdominance, epistasis and the relative frequencies of genes of large and small effect). A distinction between the dominance and overdominance hypotheses is that deleterious recessive mutations should be purged in inbreeding populations. Comparative studies of populations differing in their level of inbreeding and experimental approaches that allow selection among inbred lines support this prediction. More direct biometric approaches provide strong support for the importance of partly recessive deleterious alleles. Investigators using molecular markers to study quantitative trait loci (QTL) often find support for overdominance, though pseudo-overdominance (deleterious alleles linked in repulsion) may bias this perception. QTL and biometric studies of inbred lines often find evidence for epistasis, which may also contribute to the perception of overdominance, though this may be because of the divergent lines initially crossed in QTL studies. Studies of marker segregation distortion commonly uncover genes of major effect on viability, but these have only minor contributions to inbreeding depression. Although considerable progress has been made in understanding the genetic basis of inbreeding depression, we feel that all three aspects merit more study in natural plant populations. 相似文献
13.
Selection and inbreeding depression: effects of inbreeding rate and inbreeding environment 总被引:5,自引:0,他引:5
The magnitude of inbreeding depression in small populations may depend on the effectiveness with which natural selection purges deleterious recessive alleles from populations during inbreeding. The effectiveness of this purging process, however, may be influenced by the rate of inbreeding and the environment in which inbreeding occurs. Although some experimental studies have examined these factors individually, no study has examined their joint effect or potential interaction. In the present study, therefore, we performed an experiment in which 180 lineages of Drosophila melanogaster were inbred at slow and fast inbreeding rates within each of three inbreeding environments (benign, high temperature, and competitive). The fitness of all lineages was then measured in a common benign environment. Although slow inbreeding reduced inbreeding depression in lineages inbred under high temperature stress, a similar reduction was not observed with respect to the benign or competitive treatments. Overall, therefore, the effect of inbreeding rate was nonsignificant. The inbreeding environment, in contrast, had a larger and more consistent effect on inbreeding depression. Under both slow and fast rates of inbreeding, inbreeding depression was significantly reduced in lineages inbred in the presence of a competitor D. melanogaster strain. A similar reduction of inbreeding depression occurred in lineages inbred under high temperature stress at a slow inbreeding rate. Overall, our findings show that inbreeding depression is reduced when inbreeding takes place in a stressful environment, possibly due to more effective purging under such conditions. 相似文献
14.
The consequences of population subdivision and inbreeding have been studied in many organisms, particularly in plants. However, most studies focus on the short‐term consequences, such as inbreeding depression. To investigate the consequences of both population fragmentation and inbreeding for genetic variability in the longer term, we here make use of a natural inbreeding experiment in spiders, where sociality and accompanying population subdivision and inbreeding have evolved repeatedly. We use mitochondrial and nuclear data to infer phylogenetic relationships among 170 individuals of Anelosimus spiders representing 23 species. We then compare relative mitochondrial and nuclear genetic variability of the inbred social species and their outbred relatives. We focus on four independently derived social species and four subsocial species, including two outbred–inbred sister species pairs. We find that social species have 50% reduced mitochondrial sequence divergence. As inbreeding is not expected to reduce genetic variability in the maternally inherited mitochondrial genome, this suggests the loss of variation due to strong population subdivision, founder effects, small effective population sizes (colonies as individuals) and lineage turnover. Social species have < 10% of the nuclear genetic variability of the outbred species, also suggesting the loss of genetic variability through founder effects and/or inbreeding. Inbred sociality hence may result in reduction in variability through various processes. Sociality in most Anelosimus species probably arose relatively recently (0.1–2 mya), with even the oldest social lineages having failed to diversify. This is consistent with the hypothesis that inbred spider sociality represents an evolutionary dead end. Heterosis underlies a species potential to respond to environmental change and/or disease. Inbreeding and loss of genetic variability may thus limit diversification in social Anelosimus lineages and similarly pose a threat to many wild populations subject to habitat fragmentation or reduced population sizes. 相似文献
15.
Variability in genetic load has been studied against their contrasting socioeconomic and cultural backgrounds in two endogamous populations, namely, the well-off Brahmins and the low income Jalaris of Visakhapatnam, India. The A (genetic and environmental damage) and B (hidden genetic damage) estimates are higher in Jalaris. Decreased A estimates indicate the better medical care in Brahmins; the value of B could be low since many of the deaths in consanguineous families due to infectious diseases are now rarer. The genetic load (B/A ratio) indicates that the average gamete carries 0.057 and 2.123 deleterious genes, respectively, in Brahmins and Jalaris, which, if made homozygous, would kill an individual before reproductive age. The load is 35 times higher in Jalaris; this may be due to their higher inbreeding level. Contrasting socioeconomic differences and meagre medical aid might add another bias towards relatively higher B/A in Jalaris. In general the observed genetic load in both populations are lower than in other studies which may be due to gradual elimination of deleterious genes by continued practice of inbreeding. 相似文献
16.
17.
Nevison CM Barnard CJ Beynon RJ Hurst JL 《Proceedings. Biological sciences / The Royal Society》2000,267(1444):687-694
Extreme inbreeding will compromise an animal's ability to discriminate between individuals and, thus, assess familiarity and kinship with conspecifics. In rodents, a large component of individual recognition is mediated through chemical communication. The counter-marking of competitor males' scent marks provides a measure of discrimination between their own scent and that from other individuals. We investigated whether males in common outbred (ICR(CD-1) and TO) and inbred (BALB/c) strains of laboratory mice could recognize the urinary scents of other individuals by measuring their investigation and counter-marking responses. Dominant males of outbred strains investigated and counter-marked scents from other males, whether of the same or another strain. Dominant inbred BALB/c males investigated but did not counter-mark their own strain scents, counter-marking only those from another strain. They did not use environmentally induced status differences in odours to recognize scents from other males. The inability of the inbred mice to discriminate between their own scent marks and those of other males is likely to alter their competitive behaviour, which could influence responses in experiments and the welfare of caged laboratory mice. 相似文献
18.
In nonpedigreed wild populations, inbreeding depression is often quantified through the use of heterozygosity-fitness correlations (HFCs), based on molecular estimates of relatedness. Although such correlations are typically interpreted as evidence of inbreeding depression, by assuming that the marker heterozygosity is a proxy for genome-wide heterozygosity, theory predicts that these relationships should be difficult to detect. Until now, the vast majority of empirical research in this area has been performed on generally outbred, nonbottlenecked populations, but differences in population genetic processes may limit extrapolation of results to threatened populations. Here, we present an analysis of HFCs, and their implications for the interpretation of inbreeding, in a free-ranging pedigreed population of a bottlenecked species: the endangered takahe (Porphyrio hochstetteri). Pedigree-based inbreeding depression has already been detected in this species. Using 23 microsatellite loci, we observed only weak evidence of the expected relationship between multilocus heterozygosity and fitness at individual life-history stages (such as survival to hatching and fledging), and parameter estimates were imprecise (had high error). Furthermore, our molecular data set could not accurately predict the inbreeding status of individuals (as 'inbred' or 'outbred', determined from pedigrees), nor could we show that the observed HFCs were the result of genome-wide identity disequilibrium. These results may be attributed to high variance in heterozygosity within inbreeding classes. This study is an empirical example from a free-ranging endangered species, suggesting that even relatively large numbers (>20) of microsatellites may give poor precision for estimating individual genome-wide heterozygosity. We argue that pedigree methods remain the most effective method of quantifying inbreeding in wild populations, particularly those that have gone through severe bottlenecks. 相似文献
19.
Céline Devaux Russell Lande Emmanuelle Porcher 《Evolution; international journal of organic evolution》2014,68(11):3051-3065
We analyze evolution of individual flowering phenologies by combining an ecological model of pollinator behavior with a genetic model of inbreeding depression for plant viability. The flowering phenology of a plant genotype determines its expected daily floral display which, together with pollinator behavior, governs the population rate of geitonogamous selfing (fertilization among flowers on the same plant). Pollinators select plant phenologies in two ways: they are more likely to visit plants displaying more flowers per day, and they influence geitonogamous selfing and consequent inbreeding depression via their abundance, foraging behavior, and pollen carry‐over among flowers on a plant. Our model predicts two types of equilibria at stable intermediate selfing rates for a wide range of pollinator behaviors and pollen transfer parameters. Edge equilibria occur at maximal or minimal selfing rates and are constrained by pollinators. Internal equilibria occur between edge equilibria and are determined by a trade‐off between pollinator attraction to large floral displays and avoidance of inbreeding depression due to selfing. We conclude that unavoidable geitonogamous selfing generated by pollinator behavior can contribute to the common occurrence of stable mixed mating in plants. 相似文献
20.
A classical paradigm in population genetics is that homozygosity or inbreeding affects individual fitness through increased disease susceptibility and mortality, and diminished breeding success. Using data from an insular population of mouflon (Ovis aries) founded by a single pair of individuals, we compare embryo number of ewes with different levels of inbreeding. Contrary to expectations, ewes with the highest levels of homozygosity showed the largest number of embryos. Using two different statistical approaches, we showed that this relationship is probably caused by heterozygosity at specific genes. The genetics of embryo number coupled with cyclic dynamics could play a central role in promoting genetic variation in this population. 相似文献